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Preface

This volume contains the proceedings of the Thirteenth International Workshop on Graph Com-
putation Models (GCM 2022)1, which was held in Nantes, France on 6th July 2022 as part of
the STAF federation of conferences.
Graphs are common mathematical structures that are visual and intuitive. They constitute a
natural and seamless way for system modelling in science, engineering, and beyond, including
computer science, biology, and business process modelling. Graph computation models con-
stitute a class of very high-level models where graphs are first-class citizens. The aim of the
International GCM Workshop series is to bring together researchers interested in all aspects of
computation models based on graphs and graph transformation. It promotes the cross-fertilising
exchange of ideas and experiences among senior and young researchers from different commu-
nities interested in the foundations, applications, and implementations of graph computation
models and related areas.
Previous editions of GCM series were held in Natal, Brazil (2006), Leicester, UK (2008), En-
schede, The Netherlands (2010), Bremen, Germany (2012), York, UK (2014), L’Aquila, Italy
(2015), Wien, Austria (2016), Marburg, Germany (2017), Toulouse, France (2018), Eindhoven,
The Netherlands (2019), online (2020), and online (2021).
These proceedings contain six accepted papers. All submissions were subject to careful refereeing
(at least three reviews per paper). The topics of accepted papers range over a wide spectrum,
including theoretical aspects of graph transformation, model checking, proofs, as well as appli-
cations to program analysis and transformation. Selected revised papers from these proceedings
will be published online by Electronic Proceedings in Theoretical Computer Science (EPTCS,
http://www.eptcs.org/). We would like to thank everyone who contributed to the success of
GCM 2022, especially the Programme Committee and the additional reviewers for their valuable
contributions to the selection process, as well as the contributing authors without whom this
volume would not exist.

6th July 2022 Reiko Heckel and Chris Poskitt
Programme Chairs of GCM 2022

1GCM 2022 web site: https://gcm2022.github.io/

http://www.eptcs.org/
https://gcm2022.github.io/
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ILP Problems
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In the Model-Driven Software Engineering (MDSE) community, the combination of techniques op-
erating on graph-based models (e.g., Pattern Matching (PM) and Graph Transformation (GT)) and
Integer Linear Programming (ILP) is a common occurrence, since ILP solvers offer a powerful ap-
proach to solve linear optimization problems and help to enforce global constraints while delivering
optimal solutions. However, designing and specifying complex optimization problems from more
abstract problem descriptions can be a challenging task. A designer must be an expert in the spe-
cific problem domain as well as the ILP optimization domain to translate the given problem into a
valid ILP problem. Typically, domain-specific ILP problem generators are hand-crafted by experts,
to avoid specifying a new ILP problem by hand for each new instance of a problem domain. Un-
fortunately, the task of writing ILP problem generators is an exercise, which has to be repeated for
each new scenario, tool, and approach. For this purpose, we introduce the GIPS (Graph-Based ILP
Problem Specification Tool) framework1 that simplifies the development of ILP problem generators
for graph-based optimization problems and a new Domain-Specific Language (DSL) called GIPSL
(Graph-Based ILP Problem Specification Language) that integrates GT and ILP problems on an
abstract level. Our approach uses GIPSL specifications as a starting point to derive ILP problem
generators for a specific application domain automatically. First experiments show that the derived
ILP problem generators can compete with hand-crafted programs developed by ILP experts.

1 Introduction

In recent years Model-Driven Software Engineering (MDSE) techniques have been successfully used
to tackle a plethora of interesting problems, such as model synchronization using Triple Graph Gram-
mars (TGGs) [14], model checking [23], Model-driven Virtual Network Embedding (MdVNE) [20], or
the task of solving resource allocation problems in general [16]. All these examples share two com-
monalities: (1) They operate on (typed and attributed) graphs. (2) They check whether these graphs
satisfy certain constraints (i.e., model checking), or they modify said graphs in order to satisfy certain
constraints and optimize a given objective function. In the latter case, the graph is typically transformed
by a sequence of local graph transformations, described by a set of Graph Transformation (GT) rules.
In the many cases, where graph-based models are employed, graph Pattern Matching (PM) can be used
to search for local structural as well as local attribute constraint violations or to find valid locations for
graph transformations. Sadly, optimization as well as defining and enforcing global constraints, e.g., a
constraint on the aggregate value of attribute values of several nodes, is something that is very hard to do
using GT rules or PM only, since most of the existing GT tools are (a) not expressive enough or (b) do
not have sufficient tool support. On the other hand, using Integer Linear Programming (ILP) only to
define and enforce structural constraints on graphs is a cumbersome and inefficient task [18]. Therefore,

1GIPS - https://github.com/Echtzeitsysteme/gips

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/Echtzeitsysteme/gips


2 Graph-Based Specification and Automated Construction of ILP Problems

a common approach is to combine GT frameworks (e.g., eMoflon [13], Henshin [3], VIATRA [21]) with
ILP, to enable both, checking for global constraint violations and optimizing results for some objective
function. MdVNE is an example where the combination of GT and ILP techniques is employed to solve
a Virtual Network Embedding (VNE) problem. More precisely, the goal is to find an optimal mapping of
virtual elements onto a physical network while upholding certain resource constraints. Besides the fact
that this combination works well in specific scenarios, a major issue with this common approach remains,
namely the fact that for each new tool tackling some new problem domain, an ILP problem generator has
to be hand-crafted anew and, usually, connected to preexisting GT frameworks via hand-written code.
This is a tedious and error-prone task and, consequently, the problem that we are tackling in our approach
presented in this paper.

GIPS (Graph-Based ILP Problem Specification Tool), the tool proposed in this paper, enables users
to generate domain-specific ILP problem generators given a metamodel (in form of a UML class dia-
gram) and a problem specification in our new Domain-Specific Language (DSL) GIPSL (Graph-Based
ILP Problem Specification Language), containing a set of GT rules, a set of constraints, and an optional
objective function. This enables the usage of graph pattern matches within ILP constraints. Therefore,
we directly encode the matches into binary ILP variables and automatically generate the necessary glue
code, which connects off-the-shelf ILP solvers (e.g., Gurobi2) with a GT engine.

GIPS

Die blauen Linien sind nur dafür da, um in TeX das PDF zu beschneiden

GTPM ILP Solver

Model Matches Mappings/ILP Problem

ILP Variables
ILP Constraints
ILP Objectives

Solution Deployment

Figure 1: Workflow diagram of the GIPS framework (red star = generated during build time).

To give a brief overview, concept Figure 1 shows the workflow of our tool. The input consists of two
parts: An instance graph and a set of pattern matches are obtained from the same instance graph as a
result of pattern matching. Both of these inputs are used by our tool GIPS to construct an ILP problem
according to user specifications given in GIPSL. After solving the problem, changes can be applied to
the instance graph by applying GT rules, which, in turn, leads to a modified instance graph as output.
If necessary, this output can be reused as an input for another GIPS run. To achieve this goal, our tool
is tightly integrated into the state-of-the-art GT interpreter eMoflon::IBeX-GT3, which does not only
provide an expressive DSL to specify patterns and rules but also the massively parallelized incremental
graph pattern matcher HiPE4. In addition, integration into the Eclipse development environment5 ensures
a high level of automation and developer support (e.g., code completion, syntax highlighting, semantic
checking, type safety, etc.). This heavily model-driven type of software development leads to a potential
reduction of the prototype engineering time as well as the maintenance effort.

In this paper we evaluate our approach w.r.t. the following two research questions: (RQ1) How
does our approach compare itself to hand-crafted approaches with respect to problem solving runtime
performance? (RQ2) How much effort (e.g., lines of code) can really be saved by using our approach to
generate an ILP generator compared to implementing one by hand? In Section 2, we discuss publications

2Gurobi Optimizer - https://www.gurobi.com/products/gurobi-optimizer/
3eMoflon::IBeX-GT - https://emoflon.org/#emoflonIbex
4HiPE - https://github.com/HiPE-DevOps/HiPE-Updatesite
5Eclipse development environment - https://www.eclipse.org/

https://www.gurobi.com/products/gurobi-optimizer/
https://emoflon.org/#emoflonIbex
https://github.com/HiPE-DevOps/HiPE-Updatesite
https://www.eclipse.org/
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that are related to our approach, i.e., other works that are combining ILP and GT as well as works that are
concerned with the specification and generation of ILP problems in general. In Section 3, we introduce an
illustrative motivating example using the VNE problem, followed by background knowledge concerning
ILP in Section 4.1 and GT in Section 4.2. Section 5 explains the overall concept of the approach presented
in this paper. In Section 6, we present our newly developed DSL GIPSL together with the tool GIPS,
which we use to evaluate our approach in Section 7 regarding the central research questions. Finally,
Section 8 sums up our contribution and gives an overview of possible future enhancements.

2 Related Work

Our approach and our motivating example touch on several active fields of research within the MDSE
community, such as (rule-based) Model Transformation (MT), graph mapping, resource allocation, etc.,
all in combination with ILP to various degrees. For this reason, we have identified a set of related works
mostly centered around (a) model transformation, model synchronization, or resource allocation, with
or without the help of ILP solving and (b) ILP problem construction from specifications with various
degrees of abstraction. Regarding (a), MT and resource allocation, we have deemed the following works
to be related to our approach:

Pohlmann et al. [16] present an approach to specify and solve resource allocations problems in gen-
eral, using an example of the automotive system’s domain. They present a DSL called ASL, with which
a resource allocation problem can be specified in a concise manner. From this specification an ILP prob-
lem is constructed and, at runtime, the solution (if one does exist) is constructed automatically. Our
idea is somewhat related to that since we aim to automatically generate ILP problems from an abstract
specification and we do both provide graph patterns as a means to encode structural constraints into ILP
variables. As a major difference, our approach is much more general in nature, since we do not aim to
generate ILP problems that lead to solutions for one problem domain only, which is reflected in our own
DSL. But we will show that one can solve such a class of problems with our approach using our moti-
vating example. In addition to that, we allow for user-defined objective functions that are not supported
by Pohlmann et al.

In their works, [9, 10] Götz et al. have developed an approach that, similar to our work, creates an
ILP problem from a specification in a model-based and mostly automated fashion. In the presented use-
case their approach is used to find an optimal placement of software modules on hardware resources,
which is related to our motivating MdVNE example. As a major difference, Götz et al. do not use graph
patterns and in extension, graph pattern matching to check structural constraints of a given model locally
and, thus, cannot generate ILP variables automatically, which correspond to matches satisfying these
constraints. Instead, they encode all possible binary combinations of model elements into ILP variables
and enforce structural constraints by transforming them into regular algebraic constraints and adding
those constraints to the ILP problem. This approach, compared to ours, has two downsides: Firstly,
it increases the amount of ILP variables and, therefore, the search space substantially and, secondly, it
increases the amount of necessary ILP constraints, increasing the problem size and usage of working
memory.

Tomaszek et al. presented a model-driven approach to the VNE problem based on so-called Triple
Graph Grammars [19], which also combines GT and ILP technology and also has a focus on resource al-
location problems. Similar to our approach, but not to the same extent, it provides a somewhat automated
ILP problem construction approach. TGG rules are automatically translated into binary ILP variables
and ILP constraints can partly be extracted from the TGG rules automatically, while more complex con-
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straints, e.g., constraints on aggregated attribute values must be implemented by hand. In contrast to our
approach, this TGG-based approach does not allow for the specification of an objective (optimization)
function. Instead, the overall optimization goal is fixed and aims to map a maximum number of virtual
(communication) network elements onto a (physical communication) substrate network. To bypass the
optimization goal limitations of TGGs, Tomaszek et al. modified the approach towards the one presented
in [18], which uses GT rules and a hand-crafted ILP problem generator to specify a solution strategy for
VNE problems with a specific optimization function. The drawback of this approach is the fact that the
generation of ILP problems cannot be automated to the same degree as in the previous publication, is
highly domain-specific, and is prone to manual coding errors.

Fleck et al. [6] tackle the rule orchestration problem, where they try to find an ordered set of rule-
match pairs that modify a given model in such a way that it optimizes a given fitness function. They
present a model-driven approach that also constructs an optimization problem automatically from a given
specification, similar to our approach. In contrast, this will not result in a linear problem intended
for an ILP solver but a multi-objective optimization problem intended to be solved by a search-based
optimization algorithm (e.g., a genetic algorithm). As a downside, genetic algorithms do not guarantee
optimal solutions and often have serious problems identifying promising sequences of rule applications
in the huge search space of all possible sequences. In contrast, our approach can guarantee optimal
solutions by using ILP solvers, given enough time.

Weidmann et al. [2] presented a hybrid approach to fault-tolerant consistency management in MDSE
that combines TGGs and various optimization techniques (which include ILP). In a case study, Weid-
mann et al. used their approach to automate scheduling processes of assigning test tasks to test develop-
ers. For this purpose, they designed a DSL to allow head test engineers to specify test schedule problem
instances. Unfortunately, the presented DSL is highly specialized for the task of scheduling test jobs
for test engineers. In contrast, the presented approach in this paper can be used to specify and solve a
variety of graph mapping problems that also include (generic) scheduling problems, as long as these are
expressible as an ILP problem.

Regarding (b), ILP problem specification and automated construction, we have identified the follow-
ing well-established approaches:

General Algebraic Modeling System (GAMS) [5] and A Mathematical Programming Language
(AMPL) [8]. Both are abstract modeling languages and systems for the specification, maintenance,
and solving of mathematical optimization problems. They were created to model and solve a variety of
mathematical optimization problems like ILP and Mixed-Integer Linear Programming (MILP), but they
also address non-linear problem domains. Therefore, they provide their own syntax to specify a problem
that is close to the abstract mathematical problem description known from the literature. In contrast to
that, the DSL presented in this paper is more object-oriented and combines aspects from the GT world
with ILP, with the intention of making our DSL more accessible and intuitive to use. On the downside,
most of the concepts of this paper are currently limited to ILP problems and, thus, cannot be used to
solve non-linear problems, which GAMS and AMPL can.

Since most of the algebraic modeling languages (like GAMS and AMPL) were commercial products
back in the 1980s, the authors of Zuse Institute Mathematical Programming Language (ZIMPL) [12]
created their own mathematical programming language that was open-sourced and, hence, can easily be
used by, e.g., students. The ZIMPL language is used to translate the mathematical model of a given
problem into either a linear or a non-linear (M)ILP or mathematical programming system formulation,
respectively. The output of this translation can be used to start an open-source or commercial solver to
find the solution to the problem. As with GAMS and AMPL, the ZIMPL syntax is tightly related to the
algebraic mathematical problem description, which GIPSL is not. Similarly, other algebraic modeling
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languages that we have found mostly increase the abstraction level of the algebraic optimization problem
description to varying degrees. In contrast to that, our work allows for the use of a tightly integrated
specification language to generate ILP problems automatically from GT rules, mapping constraints, and
objective functions for a given graph-based optimization model.

3 Motivating Example

Figure 2: Simplified MdVNE metamodel. Figure 3: Example MdVNE model instance.

We present MdVNE [20] as a motivating example to explain and to evaluate our newly developed
approach. On the one hand, this presents us with the unique opportunity to directly compare the ILP
generator, which was automatically generated by our approach, with the hand-crafted ILP generator of
Tomaszek’s et al. work. On the other hand, MdVNE is a relevant problem that is subject to ongoing
research and helps to illustrate the capabilities of our approach nicely.

MdVNE is a model-driven approach to VNE, which tackles the problem of mapping virtual network
topologies onto a substrate network topology within the data center context. In MdVNE, both, the vir-
tual network and the substrate network elements are modeled as nodes in a typed and attributed graph,
corresponding to the metamodel6 in Figure 2. Accordingly, references between these nodes are mod-
eled as typed edges of the same graph. The central challenge of the VNE problem and, therefore, the
MdVNE problem, is to find a valid mapping of virtual elements (of one or more Virtual Network Re-
quests (VNRs)) onto substrate elements that does not exceed available substrate resources and is optimal
according to a given objective function. This can be done individually for each VNR or for multiple
VNRs at once (batch approach). For example, a suitable objective function could be the minimization
of the aggregated communication costs of all virtual links [20]. Unfortunately, VNE is a resource al-
location problem, which is known to be NP-hard [1]. Therefore, the size of the search space has a
significant impact on the runtime of algorithms that solve VNE problems. To reduce the search space,
the methodology of MdVNE was introduced by Tomaszek et al. [20, 18]. The search space reduction is
achieved by using Incremental Graph Pattern Matching (IGPM), which preselects only tuples (matches)
of the substrate and virtual nodes that satisfy certain structural and attribute constraints according to a set
of graph patterns. Figure 3 shows an example mapping that illustrates this, using a small graph whose

6The original metamodel in Tomaszek’s et al. work [20] is quite large. Due to space constraints for this submission, we
present a reduced version of the MdVNE metamodel.



6 Graph-Based Specification and Automated Construction of ILP Problems

components correspond to the metamodel of Figure 2. In Figure 3, the substrate link sl2 with a total
bandwidth of 1000 Mbit/s has an available bandwidth of 900 Mbit/s because the virtual link vl2 with a
bandwidth of 100 Mbit/s is mapped, by virtue of creating the host edge between vl2 and sl2.

4 Preliminaries

4.1 Integer Linear Programming

The goal of an Integer Linear Programming (ILP) problem is the minimization (maximization) of an
objective function F : Zn → R by finding an integer target vector x⃗ ∈ Zn while adhering to various
constraints f j (⃗x) ≤ 0 ( j = 1, . . . ,m) [4, 15]. Its canonical form is given in Eq. (1), where b⃗, c⃗ ∈ Rn are
vectors, A ∈ Zn×m is a coefficient matrix with integer entries only, and x⃗ ∈ Zn is the solution vector.

minimize c⃗T x⃗ subject to A⃗x ≤ b⃗, x⃗ ≥ 0, and x⃗ ∈ Zn (1)

For problems with non-convex objective functions, there can be more than one locally optimal vector.
The minimization of the target function can be converted to a maximization (or vice versa) if it is mul-
tiplied by the factor −1. One special case of an integer linear problem is the so-called bivalent linear
problem, in which all entries of the vector x⃗ have to be either 0 or 1 [4].

The mapping of virtual networks can be written as a bivalent linear problem as proposed by Tomaszek
et al. [18]. Therefore, we may describe the VNE problem as a set of unknown integer variables, linear
constraints, and a linear target function [20] (see Section 3). The VNE problem can then be solved as an
integer linear problem using highly sophisticated solvers like Gurobi7 or CPLEX8.

4.2 Graph Transformation

As indicated by the motivating example, models in our approach are represented by typed and attributed
graphs with objects corresponding to typed nodes and references between objects corresponding to typed
edges. Due to this circumstance, we make use of GTs, which provides the means to express model
transformations on graphs in a declarative and rule-based fashion. A GT rule is composed of a so-called
Left-Hand Side (LHS) and an Right-Hand Side (RHS). The LHS represents a precondition, which has to
be met in the instance graph (e.g., a network model) before a GT rule can be applied. The RHS, on the
other hand, defines a postcondition, which must be satisfied after the rule has been applied. Consequently,
graph transformation heavily depends on graph pattern matching, which solves the problem of finding
some subgraph in an instance graph that matches a graph pattern, i.e., the LHS of a rule. Hence, such
a subgraph is called a match. Graph pattern matching tools will find all match occurrences in a graph
similar to a predefined graph pattern, where subgraphs of a model that fulfill a graph pattern are called
(graph pattern) matches and consist of a set of instance graph nodes successfully mapped to graph pattern
nodes. Figure 4 shows two examples GT rules:

First, the LHS of the server2server rule is a pattern that will instruct a pattern matcher to find
matches that contain a SServer and a VServer. In addition to that, the attribute constraint demands that
a match is only valid if the SServer has enough CPU resources left to fully satisfy the CPU requirements
of the VServer. If the server2server rule is applied, the RHS demands the creation of a new host

7Gurobi Optimizer - https://www.gurobi.com/products/gurobi-optimizer/
8ILOG CPLEX Optimization Studio - https://www.ibm.com/products/ilog-cplex-optimization-studio

https://www.gurobi.com/products/gurobi-optimizer/
https://www.ibm.com/products/ilog-cplex-optimization-studio
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server2server : Rule

ssrv : SServer vsrv : VServer

vsrv.cpu <= ssrv.resCpu

<name> : <Type> Node

Attribute
Constraint

… <= …
++host

++ Created
Elements

ssrv.resCpu := ssrv.resCpu – vsrv.cpu

… := …
Attribute
Assignment

link2link : Rule

sl : SLink vl : VLink

vl.bw <= sl.resBw

++host

sl.resBw := sl.resBw – vl.bw

Figure 4: Rule for matching and mapping a virtual server to a substrate server (server2server) and
rule for matching and mapping a virtual link to a substrate link (link2link).

edge and the reduction of the residual SServer CPU resource by the amount of the VServer CPU
requirements, which leads to a mapping of a virtual server onto a substrate host server.

Second, the LHS of the link2link rule is a pattern to find matches that contain a SLink and a
VLink. As with the resource constraint of the server rule, the link rule needs to ensure that a match is
only found if the residual bandwidth attribute of sl is larger or equal to the bandwidth of vl. Similar
to server2server, the link2link rule has a RHS that demands the creation of a host edge and the
reduction of the residual attribute sl.resBw by the amount of bandwidth of the virtual link vl. Hence,
applying the link2link rule to a match will lead to a mapping of a virtual link onto a substrate link,
given a valid solution of the ILP problem generated by our approach (see Section 5).

On a side note, despite the example GT rules only showing the creation of new edges, the GT rules
in our approach support the creation and deletion of arbitrary graph elements as well9.

Pattern matching approaches can be divided into two categories, namely batch and incremental PM.
In our work, we rely on the latter approach, since IGPM keeps track of individual model changes and,
therefore, allows the sets of newly found or recently disappeared matches to be updated incrementally.
This has the nice advantage that PM runtime after the initial model exploration does not increase pro-
portionally to the total size of the model but is proportional to the magnitude of a model change. Re-
collecting all previously gathered knowledge about a network model every time a virtual network is
mapped would be grossly inefficient and would lead to potentially increasing ILP problem construction
times as a consequence. Therefore, IGPM-based tools seem to be the logical choice for our approach.

Most IGPM approaches implement some derivative of Forgy’s original Rete algorithm [7], which is
a widely known approach to incremental pattern matching. Viatra [21], Democles [22], and the recently
developed HiPE10, are examples of Rete inspired IGPM tools, which all are also employed as pattern
matchers within eMoflon, our GT tool of choice. While Viatra, Democles, and other well-known IGPM
tools are mostly single-threaded, HiPE was developed with the goal to perform graph pattern matching
massively in parallel by reinterpreting Forgy’s Rete-approach anew using an actor system approach [11]
based on the Akka11 framework.

9eMoflon (https://emoflon.org/), our GT tool of choice, is configured to use a single-pushout GT approach.
10HiPE - https://github.com/HiPE-DevOps/HiPE-Updatesite
11Akka - https://www.akka.io

https://emoflon.org/
https://github.com/HiPE-DevOps/HiPE-Updatesite
https://www.akka.io
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5 From Mappings to ILP Variables

The motivating example in Section 3 is a typical example of a problem, where graphs (virtual networks)
have to be mapped onto other graphs (substrate networks), while satisfying a set of structural constraints
as well as a set of attribute constraints and possibly optimizing a given cost function at the same time.
For this reason, generalizing the idea of Tomaszek et al. [20], which combines GT techniques and ILP
to solve the VNE problem in a model-driven fashion, seems to be a promising approach to solve a whole
class of problems. Therefore, our concept revolves around the combination of IGPM, GT rules, and ILP,
with the goal to enable a concise and intuitive method to (1) specify mapping problems as optimization
problems, using ILP, (2) generate an ILP generator automatically from the specification, and (3) solve
the corresponding problem.

We define subgraphs (e.g., virtual networks) that have to be mapped onto other subgraphs (e.g.,
substrate networks) as mappings. These mappings are essentially binary ILP variables in x⃗ (see Sec-
tion 4.1), which correspond to matches of a pattern such as the LHS of a rule, e.g., server2server in
Figure 4. Therefore, any of these corresponding matches that are found in a given model (e.g., Figure 5)
are encoded as binary ILP variables onto which we can place additional ILP constraints. By using an
ILP solver, we can obtain solutions that consist of a set of binary variables, where non-zero variables
represent valid mappings, which are optimal according to an additionally given objective function.

This integration has two distinct advantages when compared to the use of either graph PM or ILP
by themselves. On the one hand, as stated in Section 4.2, graph patterns are perfectly suited to describe
graph structures within a local scope, but they cannot ensure constraints on a global scale, e.g., constraints
over aggregated attribute values, which is a necessary precondition in order to solve a problem similar
to MdVNE. This shortcoming can be alleviated through the use of ILP, which enables the definition
of constraints placed upon variables that are enforced on a global scale. On the other hand, specifying
structural constraints between tuples of graph nodes, represented by variables, as ILP constraints is
possible in principle, albeit tedious, but it enlarges the solution search space needlessly. Using patterns
and in extension massively parallelized pattern matching to efficiently find tuples of graph nodes adhering
to certain structural constraints enables the reduction of the ILP search space and offers a more concise
means of specification.

Figure 5: MdVNE model instance used as an example for the GIPS concept.

Figure 5 shows an example instance graph that consists of a substrate network and one virtual net-
work. By using GIPS with the example rule link2link of Figure 4, the pattern matcher will find two
valid matches each containing vl1 since both substrate links have enough available resources to host
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vl1. Therefore, the framework will generate two binary ILP variables to define the mapping of vl1 onto
sl1 and sl2, respectively, which is shown in Eq. (2)12.

xvl1-sl1,link2link, xvl1-sl2,link2link ∈ {0,1} (2)

Due to its limited local knowledge, the pattern matcher cannot verify that the available resources of
the substrate link can host all of the found matches of different virtual elements at the same time. To
compensate for this limitation, the resource constraints must each be formulated as ILP constraints. The
ILP solver must ensure that it chooses mappings according to all constraints, i.e., it has to verify that no
constraints are violated for a found solution. In the example of Figure 5, GIPS must generate a constraint
for each substrate link, which ensures that the residual resources are always able to host the virtual link
of the selected matches. This is shown in Eq. (3).

xvl1-sl1,link2link ·vl1bw ≤ sl1resBw ∧ xvl1-sl2,link2link ·vl1bw ≤ sl2resBw (3)

Another important aspect of the generated ILP problem over a purely PM-based approach is the fact that
each virtual element must be mapped exactly once. Eq. (2) shows that there are two possible ways to
map vl1 in the example. As a result, an ILP constraint must be generated to ensure the unique mapping
of vl1, which is shown in Eq. (4).

xvl1-sl1,link2link + xvl1-sl2,link2link = 1 (4)

Additionally, the valid solution to the ILP problem must guarantee that the source and the target node
of the virtual link are mapped onto the source and target node of the candidate substrate link. This
requirement is necessary to achieve a contiguous network mapping. Simplified, the specification must
lead to an ILP constraint of the type shown in Eq. (5), where xi,server2server,x j,server2server,xk,link2link are
binary variables that correspond to mappings.

xi,server2server + x j,server2server ≥ 2xk,link2link (5)

Using this expression, it can be ensured that the binary variable xk,link2link (the mapping of the virtual
link) can only be true, if xi,server2server (the mapping of the source node) and x j,server2server (the mapping of
the target node) are also true. A simplified specification of such a link constraint in GIPSL that is used
to derive the ILP formula of Eq. (5) presented above can be found in Appendix A.1.

Finally, as a side effect of our graph patterns being LHSs of GT rules, a mapping can be implemented
by applying a rule (e.g., creating a host edge) to a suitable match that corresponds to a non-zero ILP
variable.

6 The GIPS Framework

As mentioned in the introduction, the connection of GT frameworks and ILP solvers is common practice
in the MDSE community. At the same time this process, despite all its advantages, is a tedious and error-
-prone challenge. For example, in Tomaszek’s et al. work [20] given a set of GT specifications, a Java-
based ILP generator has to be written that transforms each match of a graph pattern into an ILP variable
and creates corresponding constraints and objectives. Consequently, with increasing project complexity,

12We use the notation xa,b to refer to ILP variables corresponding to certain mappings, where subscript a denotes a match of
the rule defined by subscript b.
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the manual effort of specifying graph patterns as well as implementing some form of ILP generator
becomes increasingly complex and time-consuming. To tackle this challenge, we developed the new
approach as presented in Section 5 and implemented it as a Java-based framework, composed of two key
components, namely: GIPS, which combines ILP solver as well as GT engine runtime components and
GIPSL, which is our newly developed DSL that integrates the specification of graph patterns, GT rules,
and ILP constraints as well as ILP objectives.

Figure 6: Component diagram of the GIPS framework (red star = generated during build time).

GIPS GIPS itself is composed of four components, as shown in Figure 6. During build time, the ILP
generator component ILP Gen and the user API GIPS API is generated according to GIPSL specifi-
cations. At runtime, GIPS Core interfaces with eMoflon to request matches as well as access to the
underlying model. The generated ILP generator component ILP Gen will construct a new ILP problem
from the model and a given set of matches, while ILP Adapter interfaces with the ILP solver (here:
Gurobi) to supply the solver with the ILP problem and, in turn, receive a solution if one exists. Fi-
nally, using the generated API GIPS API, GT rules can be applied to matches that correspond to valid
mappings (i.e., non-zero binary variables).

Listing 1: GIPSL as simplified EBNF.
Specification = {Rule | Mapping | Constraint | Objective}, GlobalObjective;
Mapping = Rule;
Constraint = (Mapping | Pattern | Type), BooleanExpression;
Objective = (Mapping | Pattern | Type), ArithmeticExpression;
GlobalObjective = (’Min ’ | ’Max ’), ArithmeticExpression;
BooleanExpression = BooleanExpression , BinaryBoolOperator ,

BooleanExpression | UnaryBoolOperator , BooleanExpression |
RelationalExpression | AttributeExpression | ’True ’ | ’False ’;

RelationalExpression = ArithmeticExpression , RelationalOperator ,
ArithmeticExpression;

ArithmeticExpression = ArithmeticExpression , BinaryOperator ,
ArithmeticExpression | UnaryOperator , ArithmeticExpression |
AttributeExpression | Number;

BinaryBoolOperator = ’&’ | ’|’;
UnaryBoolOperator = ’!’;
RelationalOperator = ’>’ | ’>=’ | ’==’ | ’<=’ | ’<’ | ’!=’;
BinaryOperator = ’+’ | ’-’ | ’*’ | ’/’;
UnaryOperator = ’sin ’ | ’cos ’ | ’sqrt ’;
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GIPSL GIPSL was developed with the Xtext13 framework, which allows for the specification of DSLs
using a specification language based on the Extended Backus-Naur Form (EBNF). As a result, we
can provide several common IDE support features for our language, such as code completion, syntax
highlighting, as well as syntactic and semantic validation. Listing 1 shows a reduced version14 of our
DSL in EBNF, which we will explain using examples of the MdVNE scenario (see Section 3), beginning
with Mapping. As explained in Section 5, mappings are the central element in our approach, since
this allows us to map whole subgraphs, encoded as graph pattern matches, by encoding the matches
into binary ILP variables. In Listing 2, we define such a mapping with the freely configurable name
srv2srv for the rule server2server. Consequently, this will lead to the creation of a binary ILP
variable xi,server2server for the ith match of the LHS of server2server that is found in the graph.

Listing 2: GIPSL mapping example for the server to server mapping.
1 mapping srv2srv with server2server;

Constraints place additional requirements upon mappings that can go beyond simple structural or at-
tribute requirements defined in their corresponding GT rules. Using the constraint keyword a con-
straint for mappings can be specified, which will be translated into ILP constraint(s) at runtime. The
constraint keyword is always followed by the context specification after the “->” operator. This will
have two consequences:

First, an ILP constraint will be created for each element within the given context. Currently there
are 3 possible context types: class, pattern and mapping. In the case of the class keyword, a
constraint will be created for each element of the model with the type specified after the keyword. In
the case of both, the pattern and mapping keyword, a constraint will be created for each match of the
corresponding pattern (e.g., LHS of a rule). For example, in Listing 3, a constraint within the context of
SubstrateServer class is defined, as indicated by the statement in line 1 after the “->” operator, which
will lead to the creation of an ILP constraint for each element of type SubstrateServer present in a
given model.

Second, the self operator, which can be used within the constraint specification, offers access to
attributes in case of the class context, or grants access to match nodes and their attributes in case of
both, the pattern and mapping contexts.

Listing 3: GIPSL constraint example for the server to server mapping.
1 constraint -> class:: SubstrateServer {
2 mappings.srv2srv ->filter(m | m.nodes ().ssrv == self)->sum(m |

m.nodes().vsrv.cpu) <= self.resCpu
3 }

In our approach, constraints as a whole are inspired by OCL invariants, where constraints can be placed
upon models by means of boolean expressions. A constraint must hold for every non-zero binary vari-
able, for a found solution to be valid. Line 2 in Listing 3 shows an example of such a boolean OCL-like
expression. Here, we demand that the sum of CPU requirements of all virtual servers that should be
mapped to a single substrate server must not exceed its available CPU capacity. To achieve this, we fetch
all srv2srv mappings, by accessing the set of all mappings using the dot-operator. These mappings are
filtered using a filter expression, that only allows mappings corresponding to matches, where the ssrv
node is equal to the current SubstrateServer node, as indicated by the self keyword. The filtered set

13Xtext - https://www.eclipse.org/Xtext/
14The full Xtext version is available in the appendix Listing 7.

https://www.eclipse.org/Xtext/
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of mappings is then used in the sum expression. It sums up the virtual server requirement values of the
cpu attribute of all virtual server nodes that are contained within the corresponding server2server
matches. The resulting sum must be smaller or equal to (<=) the residual CPU resources (resCpu) of the
current SubstrateServer node, as indicated by the self keyword. Therefore, in this example, for each
substrate server a constraint is generated, in which the following condition must hold true: The sum of
all binary ILP variables, which correspond to server2server matches that contain the given substrate
server, multiplied with the vsrv’s cpu requirement must not exceed the value of the resCpu attribute.

Objectives associate mappings, model elements, or attribute values with certain costs. Defining an
objective using the keyword objective will lead to the creation of a linear cost function, which can be
used in the global cost function to evaluate the score of a valid solution. The name of the objective is
followed by the context specification after the “->” operator. Similar to constraints, the context has two
effects:

First, a linear cost function is created for each element within the given context. Similar to con-
straints, contexts may be model elements of a certain type, as indicated by the class keyword, or whole
matches, as indicated by the keywords pattern or mapping. In the example’s case, the srv2srv map-
ping is selected as context, which will lead to the creation of a linear cost function for each match of
server2server and whose value can only be non-zero, if the corresponding binary variable is non-
zero.

Second, the self operator, which can be used within the objective function specification, grants
access to attributes in case of the class context, or grants access to match nodes and their attributes in
case of both, the pattern and mapping contexts. The example objective will associate the cost of each
srv2srv mapping with the substrate server’s residual CPU resource value divided by its maximum CPU
resource value. Such a cost function will nudge virtual server mappings towards non-empty substrate
servers since its value gets smaller the more packed a substrate server is.

Listing 4: GIPSL objective example for the server to server mapping.
1 objective srvObj -> mapping :: srv2srv {
2 self.nodes ().ssrv.resCpu / self.nodes().ssrv.cpu
3 }

The final language construct of GIPSL is the global objective, which has two purposes, the definition
of an optimization goal and the linear combination of all other objective functions into one linear global
objective function. To define the optimization goal, either the keyword min or the keyword max can
be used. The former leads to the minimization of the global objective function by the ILP solver, the
latter leads to the maximization. Within curly brackets, all previously defined objective functions can be
linearly combined by addition or subtraction and weighted through multiplication with constant factors.
In the example, the global objective consists of the srvObj objective. This will create an ILP objective
function, where all linear functions created by virtue of the srvObj are summed up and minimized,
according to the min keyword.

Listing 5: GIPSL global objective example for the MdVNE example.
1 global objective : min {
2 srvObj
3 }
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7 Evaluation

Our model-driven approach to automatically generate ILP problems aims to offer a more productive and
less error-prone development experience while delivering runtime performance on par with state-of-the-
art hand-crafted solutions. Hence, we evaluated our approach w.r.t. the following two central research
questions:

(RQ1) How does our approach compare itself to hand-crafted approaches with respect to problem solv-
ing runtime performance?

(RQ2) How much effort (e.g., lines of code) can really be saved by using our approach to generate an
ILP generator compared to implementing one by hand?

To answer both research questions, we compare our GIPS-driven VNE algorithm implementation with
the hand-crafted solution by Tomaszek et al. [20]. In the evaluation setup, the data center (substrate
network) is a two-tier network with two core switches that are connected to all rack switches via 10 Gbit/s
links. Each rack consists of ten servers with 32 CPU cores, 512 GiB15 memory, and 1 TiB16 storage
resources each, whereby all servers are equipped in the same way. All servers are connected to the
corresponding rack-switches via 1 Gbit/s links. All possible paths of the substrate network are generated
before running the performance analysis. In total, the simulated (substrate) data center network consists
of eight racks with ten servers each. The virtual networks use the star topology with one central switch
and between 2 and 10 virtual servers. Virtual resources are sampled from distributions provided by the
Bitbrains publication [17]. Each virtual server consists of 1 to 32 CPU cores, the amount of memory
is sampled from the interval 1 GiB up to 511 GiB and the individual bandwidth of every link between
the server and the switch has a value between 100 Mbit/s and 1 Gbit/s. As the Bitbrains distribution
does not state explicit values for the storage demand per server, an equal distribution between 50 GiB
and 300 GiB is used. For every experiment, both VNE implementations have to map all virtual networks
from the same set of 40 VNRs one after another onto the substrate network17. Every plot in this section
shows measurements that are the calculated mean of five results, which were performed using the same
random seed. The error bars of every plot show the standard deviation. All experiments were run on
a workstation equipped with an AMD Ryzen Threadripper 2990WX with 32 CPU cores and 96 GB of
memory. The used operating system is Ubuntu 20.04.4 LTS, the used Java environment is OpenJDK
Temurin (build 17.0.2+8), and the ILP solver is Gurobi Optimizer.

Regarding the runtime experiment, both algorithms were able to successfully map the whole set of
virtual networks into the physical network, while achieving an approximately equal objective function
value. Figure 7 shows the runtime of the mapping process of each virtual network for both, the hand-
crafted as well as our generated VNE algorithm. Overall, the two plots show similar behavior. In contrast
to the manually derived implementation, the plot of the GIPS-based algorithm includes two relatively
high spikes up to around 100 s runtime. Even so, the mean runtime of each mapping is lower when
comparing it to the hand-crafted implementation. In fact, the total runtime of our framework is ≈25 %
lower (613.01 s, σ = 25.56s vs 815.78 s, σ = 7.2s) compared to the implementation that was hand-
written by experts. In this scenario, GIPS is able to automatically generate an ILP problem generator
that is able to keep up or even outperform the hand-written implementation, which provides a tentative
but clearly positive answer to RQ1. These results also show that tight integration of GT and ILP can lead
to a performance improvement compared to a loosely coupled hand-crafted approach.

151GiB = 230 B
161TiB = 240 B
17Both implementations are able to map individual VNRs as well as whole sets of VNRs at the same time.
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Figure 7: Hand-crafted implementation vs GIPS-based implementation: Algorithm runtime for the eval-
uation scenario per virtual network mapping.

Regarding RQ2, we used the metrics Lines Of Code (LOC) and Number Of Characters (NOC)
as measures of the amount of effort that has to be invested to combine a GT framework with an ILP
solver. Therefore, we counted all non-zero LOC and NOC of the GIPSL-based specification as well as
the needed Java code to initialize and run the API to solve the MdVNE problem. For the hand-written
MdVNE algorithm implementation from [20], we counted all non-zero LOC and NOC that are part of
the ILP problem generator. This also includes the code needed to translate the matches of the pattern
matcher into an ILP problem and to interpret the ILP solver’s solution. Tomaszek’s et al. implementation
contains a large number of additional features compared to the MdVNE implementation in GIPS, which
complicates the isolation and the line counting of the relevant code parts. Therefore, we only counted
the LOC and NOC that are necessary to run the presented evaluation scenario. We found that the hand-
written implementation consists of over 2000 LOC and 91000 NOC in total. In contrast to that, the
problem specification in GIPSL consists of 56 LOC or 3884 NOC together with 29 LOC or 1251 NOC
used to initialize and run the API. Comparing the abstract GIPSL specification with the implementation
written by an expert leads to a LOC and NOC reduction of ≈ 95 % and ≈ 94 %, respectively. The example
in this evaluation showed that the amount of source code/specification language can be reduced radically
if the graph-based optimization problem is non-trivial. Consequently, these results can provide a positive
answer to RQ2, as implementation effort can be clearly reduced by our approach.

Threats to Validity

The evaluation result of our prototype’s implementation gives a first impression of the capabilities of
the presented approach. However, the evaluation was only performed using the MdVNE scenario of
Tomaszek et al. It would be interesting to use multiple examples from different problem domains (e.g.,
assigning test tasks to test developers [2]), which could be examined to validate that GIPSL’s expressive-
ness can cover different problem domains other than MdVNE. Moreover, the used MdVNE scenario of
the evaluation does not give any insights into the scalability of our approach in terms of runtime behavior.
Hence, in future works with GIPS, a variety of different scenarios from different application domains on
different levels of complexity should be used to evaluate the performance for even larger models to gain
more detailed insights in terms of scalability.
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Furthermore, the metric LOC is arguably not the most expressive measure for comparing different
code bases. In this work, we have used LOC primarily as a measure of the amount of effort that has to
be invested in order to combine GT frameworks and ILP solvers. In future evaluations of GIPS we could
perform user studies or use different metrics to compare hand-crafted solutions with the automatically
generated implementations.

Regarding correctness, we are looking at two different aspects: First, the correctness of our frame-
work’s implementation is currently verified by various unit tests and black box tests (e.g., using the
MdVNE scenario) as well as using tests that compare results against established reference VNE imple-
mentations. Second, in future publications, we plan to present a detailed proof of the correctness of the
presented approach.

8 Conclusion and Future Work

Designing a domain-specific ILP generator is a difficult and error-prone problem that repeatedly occurs
for every domain or every newly created tool. Hence, we presented a novel approach to combine GT and
ILP techniques in an integrated DSL to tackle this problem. GIPS, the tool proposed in this paper, enables
users to generate domain-specific ILP problem generators given a metamodel and a problem specification
in our new domain-specific language GIPSL. Therefore, we use GIPSL as a textual language combining
GT and ILP to automatically generate software artifacts that integrate both approaches in order to benefit
from their synergy. GIPS is integrated into eMoflon, a state-of-the-art GT tool, in which we implemented
a model-driven approach to the VNE problem that was used as an example and as the evaluation scenario
throughout this paper. We showed multiple benefits of using GIPSL in comparison to a hand-crafted
version. First, GIPSL specifications promise to reduce the complexity as well as the number of errors
of the implementation remarkably. Moreover, the automatic generation of code can decrease the effort
needed to design an implementation. Second, we showed that our improvement of the implementation
process is as efficient as an optimized but hand-crafted solution, in terms of runtime.

In the future, we would like to extend the presented approach by enlarging the language’s capabili-
ties to, for example, also include non-binary variable types like integer or even floating-point numbers.
This would lead to an increased expressiveness including, but not limited to, the possibility to specify
MILP problems. Another important aspect of future improvements is the extension of the GIPSL gram-
mar to also include more complex logic expressions, e.g.: “If mapping x is chosen, mapping y can be
chosen”. Such language features would allow for compacter integrated specifications of complex prob-
lems, which fits well with the overall goal of the presented approach. Furthermore, it would be desirable
to implement a translation mechanism that produces ILP problems in a more common representation,
e.g., LP. This would enable the usage of a broad variety of available ILP solvers, without implementing
GIPS interfaces.
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A Appendix

A.1 Link Mapping Constraint

Listing 6 shows an example implementation of a constraint in GIPSL format, that would ensure the
presence of valid source and target node mappings for a possible virtual to substrate link mapping. Note,
that this example constraint does not solve the issue completely because it is only valid for links starting
and ending at a virtual server. To ensure a valid link mapping in larger substrate networks, one has to
define constraints that also take virtual switches into account because links might as well start or end
at virtual switches. To make it clear, it is possible to define a constraint that addresses these issues
completely and correctly using GIPSL. We decided not to include the full constraint version for the sake
of brevity. A working version of the link mapping constraint can be found in the full example, including
all other constraints in their respective full versions, on the GIPS examples repository18 on Github.

Listing 6: Simplified GIPSL constraint example for the link mapping.
1 constraint -> pattern :: link2link {
2 mappings.srv2srv ->filter(
3 m | m.nodes ().vsrv == self.nodes ().vl.source
4 & m.nodes ().ssrv == self.nodes ().sl.source)->count ()
5 + mappings.srv2srv ->filter(
6 m | m.nodes ().vsrv == self.nodes ().vl.target
7 & m.nodes ().ssrv == self.nodes ().sl.target)->count ()
8 >= 2 * mappings.l2l ->filter(
9 m | m.nodes ().sl == self.nodes ().sl

10 & m.nodes ().vl == self.nodes ().vl)->count()
11 }

A.2 GIPSL Grammar

Listing 7 shows the full version of the grammar of our GIPSL DSL in the EBNF-based Xtext specification
language.

Listing 7: GIPSL as Xtext source file.
grammar org.emoflon.gips.gipsl.GIPSL with org.emoflon.ibex.gt.editor.GT
import "http://www.eclipse.org/emf /2002/ Ecore" as ecore
import "http://www.emoflon.org/ibex/gt/editor/GT" as GT
generate GipsL "http://www.emoflon.org/gips/gipsl/GIPSL"

@Override
EditorGTFile: {EditorGTFile}

(imports += EditorImport)*
config = GipsConfig
(patterns += EditorPattern |
conditions += EditorCondition |
mappings += GipsMapping |
constraints += GipsConstraint |
objectives += GipsObjective)*
(globalObjective = GipsGlobalObjective)?;

GipsConfig : {GipsConfig}
’config ’ ’{’

18GIPS examples - https://github.com/Echtzeitsysteme/gips-examples

https://github.com/Echtzeitsysteme/gips-examples
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’solver ’ ’:=’ solver=SolverType ’[’ ’home ’ ’:=’ home=GipsStringLiteral
’,’ ’license ’ ’:=’ license=GipsStringLiteral ’]’ ’;’

(’launchConfig ’ ’:=’ enableLaunchConfig = GipsBoolean ’[’ ’main ’ ’:=’
mainLoc=GipsStringLiteral ’]’ ’;’)?

(’timeLimit ’ ’:=’ enableLimit = GipsBoolean ’[’ ’value ’ ’:=’
timeLimit=GipsDouble ’]’ ’;’)?

(’randomSeed ’ ’:=’ enableSeed = GipsBoolean ’[’ ’value ’ ’:=’
rndSeed=GipsInteger ’]’ ’;’)?

(’presolve ’ ’:=’ enablePresolve = GipsBoolean ’;’)?
(’debugOutput ’ ’:=’ enableDebugOutput = GipsBoolean ’;’)?
’}’;

enum SolverType:
GUROBI=’GUROBI ’;

GipsMapping :
’mapping ’ name=ID ’with ’ rule=[GT:: EditorPattern|ID] ’;’;

GipsConstraint :
’constraint ’ ’->’ context =( GipsMappingContext | GipsTypeContext |

GipsPatternContext) ’{’
expr = GipsBool

’}’;
GipsObjective :

’objective ’ name=ID ’->’ context =( GipsMappingContext | GipsTypeContext
| GipsPatternContext) ’{’
expr = GipsArithmeticExpr

’}’;
GipsMappingContext:

’mapping::’ mapping = [GipsMapping|ID];
GipsTypeContext:

’class::’ type = [ecore :: EClassifier ];
GipsPatternContext:

’pattern::’ pattern = [GT:: EditorPattern|ID];
GipsObjectiveExpression:

objective =[ GipsObjective|ID];
GipsGlobalObjective :

’global ’ ’objective ’ ’:’ objectiveGoal = GipsObjectiveGoal (’{’
expr = GipsArithmeticExpr

’}’)?;
enum GipsObjectiveGoal:

MIN = ’min ’ | MAX = ’max ’;
GipsBool:

expr=GipsBoolExpr;
GipsBoolExpr:

GipsBinaryBoolExpr;
GipsBinaryBoolExpr returns GipsBoolExpr:

GipsUnaryBoolExpr ({ GipsBinaryBoolExpr.left = current}
operator=GipsBoolBinaryOperator right=GipsUnaryBoolExpr)*;

GipsUnaryBoolExpr returns GipsBoolExpr: {GipsUnaryBoolExpr}
(operator=GipsBoolUnaryOperator ’(’ operand=GipsBoolExpr ’)’ ) |

GipsBooleanLiteral | GipsRelExpr;
GipsBooleanLiteral:

literal = GipsBoolean;
enum GipsBoolBinaryOperator:

AND=’&’ |
OR=’|’;

enum GipsBoolUnaryOperator:
NOT = ’!’;
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GipsRelExpr:
left=GipsArithmeticExpr (operator=GipsRelOperator

right=GipsArithmeticExpr)?;
enum GipsRelOperator:

GREATER=’>’ |
GREATER_OR_EQUAL=’>=’ |
EQUAL=’==’ |
UNEQUAL=’!=’ |
SMALLER_OR_EQUAL=’<=’ |
SMALLER=’<’;

GipsAttributeExpr:
GipsMappingAttributeExpr | GipsContextExpr |

GipsLambdaAttributeExpression;
GipsMappingAttributeExpr returns GipsAttributeExpr:

{GipsMappingAttributeExpr}
’mappings.’ mapping =[ GipsMapping|ID] ’->’ expr = GipsStreamExpr;

GipsLambdaAttributeExpression returns GipsAttributeExpr:
{GipsLambdaAttributeExpression}
var=[ GipsLambdaExpression|ID] ’.’ (expr = GipsNodeAttributeExpr | expr

= GipsContextOperationExpression | expr = GipsFeatureExpr);
GipsContextExpr returns GipsAttributeExpr: {GipsContextExpr}

’self ’ (’.’ typeCast=GipsTypeCast)? (’.’ (expr = GipsNodeAttributeExpr
| expr = GipsContextOperationExpression | expr = GipsFeatureExpr)
(’->’ stream = GipsStreamExpr)?)?;

GipsContextOperationExpression:
operation=GipsContextOperation;

enum GipsContextOperation:
VALUE = ’value ()’ |
MAPPED = ’isMapped () ’;

GipsTypeCast:
’toType(’ type=[ ecore :: EClass] ’)’;

GipsNodeAttributeExpr: {GipsNodeAttributeExpr}
’nodes ().’ node=[GT:: EditorNode|ID] (’.’ typeCast=GipsTypeCast)? (’.’

expr = GipsFeatureExpr)?;
GipsFeatureExpr:

GipsFeatureNavigation;
GipsFeatureNavigation returns GipsFeatureExpr:

GipsFeatureLit ({ GipsFeatureNavigation.left=current} ’.’
right=GipsFeatureNavigation)?;

GipsFeatureLit returns GipsFeatureExpr: {GipsFeatureLit}
feature = [ecore:: EStructuralFeature] (’.’ typeCast=GipsTypeCast)?;

GipsArithmeticExpr:
GipsSumArithmeticExpr;

GipsSumArithmeticExpr returns GipsArithmeticExpr:
GipsProductArithmeticExpr ({ GipsSumArithmeticExpr.left = current}

operator=GipsSumOperator right=GipsProductArithmeticExpr)*;
GipsProductArithmeticExpr returns GipsArithmeticExpr:

GipsExpArithmeticExpr ({ GipsProductArithmeticExpr.left = current}
operator=GipsProductOperator right=GipsExpArithmeticExpr)*;

GipsExpArithmeticExpr returns GipsArithmeticExpr:
GipsUnaryArithmeticExpr ({ GipsExpArithmeticExpr.left = current}

operator=GipsExpOperator right=GipsUnaryArithmeticExpr)*;
GipsUnaryArithmeticExpr returns GipsArithmeticExpr:

{GipsUnaryArithmeticExpr}
operator=GipsArithmeticUnaryOperator ’(’ operand=GipsBracketExpr ’)’

| GipsBracketExpr;
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GipsBracketExpr returns GipsArithmeticExpr: {GipsBracketExpr}
’(’ operand=GipsArithmeticExpr ’)’ | GipsExpressionOperand;

GipsExpressionOperand:
GipsAttributeExpr | GipsObjectiveExpression | GipsArithmeticLiteral;

GipsArithmeticLiteral:
value = (GipsDoubleLiteral | GipsIntegerLiteral);

enum GipsProductOperator:
MULT=’*’ |
DIV=’/’ ;

enum GipsExpOperator:
POW=’^’ ;

enum GipsSumOperator:
PLUS=’+’ |
MINUS=’-’ ;

enum GipsArithmeticUnaryOperator:
NEG=’-’ |
ABS=’abs ’ |
SQRT=’sqrt ’ |
sin=’sin ’ |
cos=’cos ’ ;

GipsStreamExpr:
GipsStreamNavigation;

GipsStreamNavigation returns GipsStreamExpr:
GipsStreamLit ({ GipsStreamNavigation.left=current}’->’

right=GipsStreamNavigation)?;
GipsStreamLit returns GipsStreamExpr:

{GipsSelect} ’typesOf ’ ’(’ type=[ecore:: EClassifier] ’)’ |
{GipsStreamSet} operator=GipsStreamSetOperator lambda =

GipsLambdaExpression |
{GipsStreamArithmetic} operator=GipsStreamArithmeticOperator lambda =

GipsLambdaExpression |
{GipsStreamBoolExpr} operator=GipsStreamNoArgOperator;

GipsLambdaExpression:
’(’ name=ID ’|’ expr=GipsBoolExpr ’) ’;

enum GipsStreamSetOperator:
FILTER=’filter ’;

enum GipsStreamArithmeticOperator:
SUM = ’sum ’;

enum GipsStreamNoArgOperator:
EXISTS = ’exists ()’ |
NOTEXISTS = ’notExists ()’ |
count = ’count () ’;

GipsDoubleLiteral:
GipsDouble;

GipsIntegerLiteral:
GipsInteger;

GipsDouble returns ecore:: EDouble:
(’-’)?INT ’.’ INT;

GipsInteger returns ecore::EInt:
((’-’)? INT);

@Override
terminal INT returns ecore::EInt:

’0’..’9’ (’0’..’9’)*;
GipsBoolean returns ecore:: EBoolean:

TRUE | FALSE;
terminal TRUE returns ecore:: EBoolean:
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’true ’;
terminal FALSE returns ecore:: EBoolean:

’false ’;
GipsStringLiteral:

STRING;
@Override
terminal STRING returns ecore :: EString:

’"’ ( ’""’ | !(’"’) )* ’"’;
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We present a computation model based on a subclass of GP 2 graph programs which can simulate any
off-line Turing machine of space complexity O(s(n) logs(n)) in space O(s(n)). The simulation only
requires a quadratic time overhead. Our model shares this property shown by van Emde-Boas with
Schönhage’s storage modification machines and Kolmogorov-Uspenskii machines. These machines
use low-level pointer instructions whereas our GP 2-based model uses pattern-based transformation
rules and high-level control constructs.

1 Introduction

Schönhage’s storage modification machines (SMMs) and Kolmogorov-Uspenskii machines (KUMs) are
graph-based computation models that do not use graph transformation rules. They have the remarkable
feature of being able to simulate Turing machines using less space with only polynomial time overhead,
using a uniform space measure [15]. Although these are graph-based models, the literature on rule-based
graph transformation so far seems to have ignored the work of Schönhage [13] and Kolmogorov [9], and
in particular the results of van Emde Boas [15] and Luginbuhl [10].

SMMs and KUMs differ from modern graph transformation languages in that they use low-level
pointer instructions instead of pattern-based rules where the programmer can specify a subgraph and
how it is transformed, allowing for a more natural implementation of graph algorithms. This is a higher-
level problem-oriented approach.

The lack of “go to” statements is an advantage of structured programming languages like GP 2 since
they are known to be harmful [6]. Furthermore, GP 2 is based on the double-pushout approach for
graph transformation, which comes with a large amount of theoretical results. We are not aware of any
comparable theory for SMMs and KUMs.

The fact that this space compression property applies to a high-level language is not obvious. Even
so, we show in this paper that GP 2 exhibits the same space compression feature. Specifically, we show
that a Turing machine using O(s(n) logs(n)) space can be simulated in O(s(n)) space with quadratic time
overhead, where s(n) is an arbitrary function. The complexity class of the simulation is a strict subset of
the original class (for non-constant s(n)).

Note that another way to show space compression is to efficiently simulate SMMs in general. This
would also mean other properties are applicable to GP 2, such as the real-time simulation of Turing
machines shown by Luginbuhl [10]. This paper’s approach however comes with a concrete class of
programs that show in much detail that the simulation is possible.

In Section 2, we describe how GP 2 uses rule-based graph transformation efficiently and show a new
variant of a Theorem that allows for constant-time rule matching.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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We show how we simulate Turing machines in Section 3. How configurations of Turing machines
are encoded as graphs is described in Subsection 3.1. The simulating program is in Subsection 3.2. We
then discuss correctness in Subsection 3.4.

In Section 4 we identify a class of efficient computation models based on GP 2, which come with
time and space complexity measures. We then show that our simulation gives rise to such a model.

Finally, in Section 5, we show the aforementioned time and space complexities of the simulation,
and discuss the use of logarithmic versus uniform space measures.

2 Rule-Based Graph Transformation

Throughout this paper, we use a subset of GP 2 called SGP 2 (Small GP 2). Instead of using expressions
with variables as labels, we use rules with various constant labels rather than rule schemata as in full
GP 2. Application conditions are not needed either.

We call the graphs to which rules are applied host graphs. Nodes and edges can be marked red,
green or blue. In addition, nodes can be marked grey and edges can be dashed. For example, rules
in CacheNext in Figure 12 contains red and unmarked nodes and blue edges. Marks are convenient,
among other things, to record visited items during a graph traversal and to differentiate between similar
structures.

The principal SGP 2 programming construct used in this paper are graph transformation rules ac-
cording to the double-pushout approach with injective matching. For example, the rules in CacheNext
in Figure 12 consist of a left-hand graph and a right-hand graph which are specified graphically. The
small numbers attached to nodes are identifiers, all other black text in the graphs are labels.

The structural operational semantics of programs is defined in Figures 2 and 3, where inference
rules inductively define a small-step transition relation→ on configurations. In the setting of SGP 2, a
configuration is either a command sequence together with a host graph, just a host graph or the special
element fail:

→ ⊆ (ComSeq×G )× ((ComSeq×G )∪G ∪{fail})

where G is the set of SGP 2 host graphs. Configurations in ComSeq×G , given by a rest program and
a host graph, represent states of unfinished computations while graphs in G are final states or results of
computations. The element fail represents a failure state. A configuration γ is said to be terminal if there
is no configuration δ such that γ → δ .

Figure 2 shows the inference rules for the core commands of SGP 2. The rules contain meta-variables
for command sequences and graphs, where R stands for a call of a rule set or of a rule, C,P,P′,Q stand
for command sequences, and G,H stand for host graphs. The transitive and reflexive-transitive closures
of→ are written→+ and→∗, respectively. We write G⇒R H if H results from host graph G by applying
the rule set R, while G 6⇒R means that there is no graph H such that G⇒R H (application of R fails).

An example of a SGP 2 program can be found in Figure 1.

Main = reverse!; unmark!

reverse =

1 2

⇒
1 2

unmark =

1 2

⇒
1 2

Figure 1: Small GP 2 program that reverses the edges of an empty-labelled graph.
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[call1]
G⇒R H
〈R, G〉 → H [call2]

G 6⇒R
〈R, G〉 → fail

[seq1]
〈P, G〉 → 〈P′, H〉

〈P;Q, G〉 → 〈P′;Q, H〉 [seq2]
〈P, G〉 → H

〈P;Q, G〉 → 〈Q, H〉

[seq3]
〈P, G〉 → fail
〈P;Q, G〉 → fail

[if1]
〈C, G〉 →+ H

〈if C then P else Q, G〉 → 〈P, G〉 [if2]
〈C, G〉 →+ fail

〈if C then P else Q, G〉 → 〈Q, G〉

[try1]
〈C, G〉 →+ H

〈try C then P else Q, G〉 → 〈P, H〉 [try2]
〈C, G〉 →+ fail

〈try C then P else Q, G〉 → 〈Q, G〉

[alap1]
〈P, G〉 →+ H

〈P! , G〉 → 〈P! , H〉 [alap2]
〈P, G〉 →+ fail
〈P! , G〉 → G

[alap3]
〈P, G〉 →∗ 〈break,H〉
〈P! , G〉 → H [break] 〈break;P, G〉 → 〈break, G〉

Figure 2: Inference rules for Small GP 2 core commands

The inference rules for the remaining SGP 2 commands are given in Figure 3. These commands are
referred to as derived commands because they can be defined by the core commands.

[skip] 〈skip, G〉 → G

[if3] 〈if C then P, G〉 → 〈if C then P else skip, G〉
[try3] 〈try C then P, G〉 → 〈try C then P else skip, G〉
[try4] 〈try C else P, G〉 → 〈try C then skip else P, G〉
[try5] 〈try C, G〉 → 〈try C then skip else skip, G〉

Figure 3: Inference rules for Small GP 2 derived commands

When analysing the time and space complexity of programs, we assume that these are fixed. This
is customary in algorithm analysis where programs are fixed and running time or space is measured in
terms of input size [1, 14]. In our setting, the input size is the size of a host graph, which we define to be
the total number of nodes and edges.

Since matching can be time-consuming we use rooted rules. They contain special nodes called roots
that can match with other roots in the host graph in constant time, allowing rule matching to happen
locally.

In order to achieve this efficient rule matching, we use a variant of the fast matching theorem first
introduced in [3]. The trade-off with the original is that we can have a more general host graph, i.e. we
allow the indegree to be unbounded, but there are more restrictions on rules, namely there needs to be a
directed path from some root node to every node in the left-hand side.

For the sake of this paper, a rule L⇒ R is fast if each node in L is reachable from some root (re-
specting edge directions). Other requirements for a rule to be fast are omitted since they concern variable
labels and application conditions, which none of the rules in this paper have.
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Theorem 1 (Fast Rule Matching). Matching can be implemented to run in constant time for fast rules,
using host graphs with a bounded outdegree that contain a bounded number of roots.

Proof. Let G be such a host graph and r such a rule. The rule r also satisfies the original variant of
the fast rule matching theorem since directed reachability implies undirected reachability. Let A be the
matching algorithm as shown in [3] as part of the proof of the original theorem. Since G can have
unbounded indegree, we cannot conclude that A is constant time. The algorithm A works by matching
paths starting from roots edge by edge. Now if we modify A to build this path using outgoing edges only,
the algorithm only needs to look for outgoing edges, of which there are constantly many due to G having
bounded outdegree. The same arguments as in the proof of the original theorem then apply, meaning the
modified algorithm A takes constant time.

3 Simulating Turing Machines

In this paper, we consider deterministic off-line Turing machines, i.e. there is a read-only finite input
tape, as well as an initially blank working tape that is one-way infinite. Acceptance happens when an
accepting state is reached. We use off-line Turing machines in order to exhibit that space compression
can happen with sublinear space complexities.

Without loss of generality, we consider off-line Turing machines whose state set Q is a finite set of
integers. The input alphabet is Σ = {1,2}, and the tape alphabet is Γ = {0,1,2}, where 0 is the blank
symbol. There is an initial state q0, an accepting state ha, and a transition function δ :Q× Σ× Γ→
Q×Γ×{L,R,S}×{L,R,S}.

The time complexity of a Turing machine is the function which, to an integer n, associates the maxi-
mum number of transitions starting from an input of size n. The space complexity is the function which
associates to n the maximum number of used working tape squares for an input of size n.

We simulate a Turing machine M with an SGP 2 program called Sim(M), as specified in Figures 6
to 12. We call the class of these programs Sim. These programs are constructed in order to achieve the
complexity results given in Section 5. For instance, rooted nodes are only essential for time complexity,
otherwise they could be replaced by marks.

Input symbols, tape symbols, and state names are encoded as integers. For simplicity, the figures in
this paper show the case where the tape alphabet has size 3, and we reserve 0 for the blank symbol.

3.1 Turing Machine Configurations as Graphs

We encode the working tape of a Turing machine by dividing it into b blocks, which we keep track of in
a list called BLOCKSET. The content of a block can be considered a ternary number that we store as an
index of BLOCKSET. Hence we want the size of a block to be logb. Since the tape alphabet is assumed
to be ternary, logarithms in this paper are of base 3. Note however that O(log3 n) = O(logc n) for any
constant c > 1. The content of the block that is currently being worked on is stored in CACHE as a list
of tape squares. Given a Turing machine of space complexity O(s(n) logs(n)), that many working tape
squares are needed. So we can divide our tape into O(s(n)) blocks of size O(logs(n)). So to represent
this in the simulation, the number of nodes needed is the sum of these complexities, i.e. O(s(n)). The
space complexity of the simulation will be proven in Theorem 4.

Figure 4 shows the initial configuration of a Turing machine with its input and working tapes and
tape heads, as well as the initial state q0. The corresponding graph can be seen in Figure 5.
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1 1 2 1 ... 2 input tape

q0

0 0 0 0 0 ... working tape

Figure 4: Initial configuration of a Turing machine
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Figure 5: Graph representation of the initial configuration of a Turing machine of space complexity
O(s(n) logs(n)).

That graph consists of the central node, labelled by the initial state q0 as represented by some integer,
and the subgraphs INPUT, BLOCKSET, and CACHE. We represent ‘left’ and ‘right’ positioning by
blue and red edges respectively. These edges will not be modified by the program. The unmarked and
unlabelled green edges mark the positions of the tape heads. Dashed edges serve to encode the state of
BLOCKSET and how it relates to CACHE.

INPUT represents the input tape of the Turing machine, and the position of the tape head is repre-
sented by an unmarked green edge from the central node. The green edge labelled "I" always points
to the leftmost square of the input tape. The working tape is represented by BLOCKSET and CACHE.
These subgraphs are implemented as doubly linked lists in order to enable fast rule matching.

Each node in BLOCKSET represents a block of c(n) nodes of the working tape. The content of a
block is encoded as a non-negative integer k ≤ b(n), represented by a dashed edge towards the kth node
of BLOCKSET (i.e. k red edges away from the leftmost node). The blue edge from the central node
points towards the leftmost node, and the dashed edge towards the block that contains the position of the
tape head.

CACHE is the block of the working tape that contains the tape head. Its position within BLOCKSET
is marked with a dashed edge from the central node. The red edge from the central node points towards
the rightmost node of the cache, and the unmarked edge towards the current position of the tape head.
The node labels represent the content of each square.

The operations of the Turing machine happen within CACHE. If the tape head moves out of bounds
of CACHE, we encode the content of CACHE within BLOCKSET, move on to another block, and decode
it into CACHE.

3.2 The Simulation

In this subsection, we assume we have a Turing machine M and describe Sim(M), the SGP 2 program
that simulates M. The program Sim(M) takes inputs that consist of graphs such as INPUT together with
the central node and green edges as represented in Figure 5. The overall behaviour of the program is that
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it starts the simulation with a small BLOCKSET and CACHE. If we run out of tape squares, we reset to
the initial configuration, extend BLOCKSET and CACHE, and restart the simulation.

Figure 6 contains the main control sequence of Sim(M). First the rule setup is called. It matches
the root and constructs CACHE with two nodes and BLOCKSET with nine nodes, as seen in Figure 5.
We omit the definition of that rule since it is straightforward.

Next we have the loop Simulate!, which means the procedure Simulate is applied until no longer
possible. The loop body first calls Transitions (Figure 7), a procedure that applies the transition
function to the current state of M. If Transitions cannot apply the transition function, the procedure
results in failure, and the loop terminates. Next, try MoveLeft is called, which means we attempt to
apply MoveLeft and if it fails, we skip this instruction. The rules in MoveLeft detect a label "L" on the
unmarked edge adjacent to the central node, which is created in Transitions if the working tape head
needs to move to the left. It then executes that move in CACHE. Analogously, try MoveRight attempts
to move the working tape head to the right. These rule sets (which are nondeterministic calls of the rules
they contain) will fail however if the tape head moves out of bounds of CACHE, which is detected by
Left or Right since the continued presence of the "L" or "R" label indicates that tape head movement
still needs to be done. In that case, PrevBlock or NextBlock (Figure 9) are called in order to move
towards the relevant block.

Figure 7 contains Transitions, the rule set that encodes the transition functions of M. For each
entry in the transition table, there is a corresponding rule in Transitions. The rules are divided into
nine categories transitionXY, where X represents the movement of the input tape head, and Y that of
the working tape head. Each rule implements the change of labels and the movement of the input tape
head directly. For the movement of the working tape head, a label is left behind on the unmarked edge,
and the actual movement is handled by Simulate in Figure 6.

Figure 8 shows the procedure Restart which, when the machine runs out of tape, resets the simula-
tion and extends the tape. CACHE and hence the size of a block is extended by one square, and the size
of BLOCKSET is tripled. This is done by first rewinding all tape heads to the initial square, then both
tapes are erased and extended.

In Figure 9, we show the procedures NextBlock and PrevBlock, which handle movement to another
block. We call the node pointed at by a dashed edge from the central node the active block node. The
procedure Encode (Figure 10) saves the information from CACHE into BLOCKSET. This process is
further described in the example in Subsection 3.3.

The procedure Decode in Figure 11 decodes the active block in BLOCKSET and stores the informa-
tion in CACHE. It is analogous to Encode.

The procedure CacheInc in Figure 12 increments CACHE as a ternary number. First the rightmost
digit is turned into a red root. Then the digit is attempted to be incremented with the rule set Inc. If the
digit is a 0 or a 1, incrementation succeeds, the process is marked as finished by turning the red root into
an unmarked node, and CacheInc terminates. If the digit is a 2 however, Inc fails, the 2 is turned into a
0, and the red root is moved along to the next digit which is attempted to be incremented. If Increment!
ends without Inc ever succeeding, it means that all digits were 2, and that the red root is still present. In
that case, Reset! turns all digits into 0.

Similarly, CacheDec decrements CACHE as a ternary number if that number is not 0, and keeps it as
0 if it already is.
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Main = setup; Simulate!
Simulate = Transitions; try MoveLeft; try MoveRight;

try Left then PrevBlock; try Right then NextBlock; try Flag then Restart

MoveLeft=
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MoveRight=
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}
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}
Flag=

{
green
green
green
green

green
green
green
green

q

1

⇒ q0
1

: q ∈ Q
}

Figure 6: SGP 2 program Sim(M) that simulates Turing machine M.
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Figure 7: Rule set Transitions that models the transitions of a Turing Machine.
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Restart = RewindTapes; ResetCache; ResetBlockset
RewindTapes = try RewindInput; try rewind_blockset; RewindCache!
ResetCache = CInit; Erase!; end
ResetBlockset = binit; try make_loop; (copy; direct; try Redirect)!; glue

RewindInput=
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Figure 8: Procedure Restart that resets the simulation and enlarges the tape.
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NextBlock = Encode; try Next then (HeadLeft!; Decode) else (SetFlag; break)
PrevBlock = Encode; Prev; HeadRight!; Decode

Next=
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}

Figure 9: Procedures NextBlock and PrevBlock that change the active block.

Encode = EncodeInit; Encoding!; Update
Encoding = CacheDec; try Finish then break; try next_value

EncodeInit=
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Figure 10: Procedure Encode that encodes the current block into BLOCKSET.

Decode = DecodeInit; Decoding!; Update
Decoding = try prev_value else break; CacheInc

DecodeInit=
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Figure 11: Procedure Decode that decodes the current block into CACHE.
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CacheInc = CacheInit; Increment!; if Unfinished then (Reset!; Finish)
Increment = try Inc then (Finish; break)

else (overflow; try CacheNext else break)

CacheDec = CacheInit; Decrement!; if Unfinished then Reset!
Decrement = try Dec then (Finish; break)

else (underflow; try CacheNext else break)

Reset = overflow; try CachePrev else break
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Figure 12: Procedures CacheInc and CacheDec that increment/decrement the ternary number stored in
CACHE.

3.3 Example

In this subsection, we give an example of a Turing machine simulation, and show how we move from
one block to another. Consider a Turing machine that takes as input the number n represented in unary,
and writes n in binary on its working tape n times. It is reasonable to assume the machine has a space
complexity of O(n logn). If n = 6, the machine uses 18 squares, which are filled with 6 copies of the
string 110 (6 in binary). A CACHE size of 2 and a BLOCKSET size of 9 are enough to represent
2 · 9 = 18 tape squares. Their representation in the simulation has only 2+ 9 = 11 nodes, which is
O(n+ logn) = O(n). The initial state of the machine on input 6 is shown in Figure 13, and the final one
in Figure 14.
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(b) Simulation

Figure 13: Initial state of the example machine

Let us sketch the behaviour of the machine. First, the input is copied in unary onto the working tape
for use as a counter. Then, a binary number to the right of the counter is incremented while traversing
the input. The previous step is repeated while decrementing the counter until it reaches 0. Tape contents
need to be shifted. The symbol 2 can be used for marking tape squares.
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Figure 14: Final state of the example machine

Now let us show what happens when the block has to be changed. Consider the situation where 010
are the first 3 squares of the working tape and the tape head is on the third square. Let the next transition
write symbol 1 and move the tape head to the left, and change state qi to state q j.
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(a) Symbol “1” written into CACHE.
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(c) First block loaded into CACHE.

Figure 15: Changing blocks

Figure 15 shows the process of changing the active block. In Subfigure 15a, a rule from Transitions
has just been applied, labelling the left node of CACHE 1, and the unmarked edge “L”. Next, in Simulate,
Left matches and PrevBlock is called. The procedure Encode loads the content of CACHE into
a dashed edge within BLOCKSET. While CACHE is decremented as a ternary number, the outgoing
dashed edge of the current (second) BLOCKSET node is shifted to the right. This produces the graph
from Subfigure 15b. Next we move one block to the left with Prev, and reposition the tape head in
CACHE with HeadRight!. We then load the new block into CACHE. While moving the outgoing
dashed edge of the current (first) BLOCKSET node to the left, the ternary number in CACHE is incre-
mented. This results in the graph from Subfigure 15c.

3.4 Correctness

We define the configuration of a Turing machine to consist of the input and working tapes, the position
of the tape heads on those tapes, and the current state.

Let us define what graphs programs in Sim operate on. We call graphs as in Figure 5 configuration
graphs. These graphs can vary from the depicted graph in the following ways. The targets of the unla-
belled green edge, dashed edges, and the unmarked edge can be any node in INPUT, BLOCKSET, and
CACHE respectively. An exception to that is the outgoing dashed edge of the active node in BLOCK-
SET (target of dashed edge from the root), which is targeted towards the leftmost node in BLOCKSET
since the content of that block is currently stored in CACHE. This is a convention that allows the graph
representation of a configuration to be unique. The labels of nodes in INPUT, CACHE, and the root node
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can be any element from the input alphabet, tape alphabet, or set of states respectively, encoded as SGP 2
labels.

Note that the graphs’ capacity to represent tape squares is limited by the sizes of BLOCKSET and
CACHE. Hence for a non-negative integer k, we define a function enck that encodes the configuration
S of a Turing machine as the configuration graph enck(S) with 3k+2 nodes in BLOCKSET and k + 2
in CACHE. The integer k corresponds to the number of times the tape is extended by the procedure
Restart. For a given value of k that is large enough, enck(S) exists and is unique.

For a Turing machine M we denote a single transition from configuration S to S′ by S⇒M S′, and the
transitive reflexive closure of that relation using⇒∗M. Similarly, for an SGP 2 rule r we use S⇒r S′ to
denote a change of configuration, and S⇒∗P S′ for a program P.

During the execution of Sim(M), graphs that are not configuration graphs are generated. They only
differ in terms of edge labels, node marks, roots, and dashed edge targets. However, these variations are
temporary. Once the procedure Simulate has successfully terminated, the host graph is once again a
configuration graph.

We say an SGP 2 program P! (i.e. a loop where procedure P is applied as long as possible) simulates
a Turing machine M of initial configuration I if, for each two configurations S and S′ of M such that
I⇒∗M S⇒M S′, we have enc0(I)⇒∗P! enck(S)⇒∗P enck(S′) for some integer k.

The following theorem shows that this is indeed the case for the class of programs presented in this
paper.

Theorem 2 (Correctness). Let M be a Turing machine and Sim(M) the corresponding SGP 2 program.
Then the subprocedure Simulate! simulates M.

Proof. Let S and S′ be configurations of M such that I⇒∗M S⇒M S′. Then some transition δ (q,a,x) =
(p,y,X ,Y ) happened, where p,q ∈ Q, a ∈ Σ, x,y ∈ Γ, and X ,Y ∈ {L,S,R}. So the only changes from S
to S′ are that q and x have been updated to p and y, and that the input and working tape heads have been
shifted into direction X and Y respectively.

We proceed by induction on the length of I⇒∗M S. For the base case we only need to show enck(S)⇒∗P
enck(S′) for some integer k. This also happens to be what we need to show for the induction step since
enc0(I)⇒∗P! enck(S) is given by the induction hypothesis, and the existence of a large enough k by part
of the proof of Theorem 4.

Now it remains to show that enck(S)⇒∗P enck(S′). The procedure Reset can be ignored because it is
never called since we already have a large enough k.

When running Simulate on the graph enck(S), the first call is the rule set Transitions. A rule
in that set that is guaranteed to be applicable is the one corresponding to the aforementioned Turing
machine transition. It correctly updates the q and x to be p and y to match enck(S′). It also moves the
input tape head to the correct position. For the rest of this proof, we will show that the working tape head
moves to the correct position.

If Y = S, the working tape head is not moved, corresponding to enck(S)′. Due to lack of an unmarked
edge label, none of the try conditions in Simulate are applicable, and we terminate with enck(S′).

The cases for Y = L and Y = R are analogous, so we will only argue for the former. When attempting
to apply MoveLeft, if the target of the unmarked edge is not the leftmost node of CACHE, the rule set
succeeds, the unmarked edge is in the correct position, and no other conditions of try statements in
Simulate are applicable. Hence we terminate with enck(S′).

If target of the unmarked edge is the leftmost node of CACHE however, the only try condition
that can match is Left. This removes the edge label and calls PrevBlock. So it remains to argue that
PrevBlock turns the host graph into enck(S′).
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The commands Prev; HeadRight! correctly position the working tape head on the rightmost node
of the previous block. It remains to show that Encode and Decode preserve the working tape content
according to the encoding enck.

The procedure Encode contains a loop that, whenever it decrements the content of CACHE, it in-
crements the content of the active block (represented by an outgoing dashed edge). This happens until
the CACHE content reaches 0, meaning the content of CACHE is correctly store in BLOCKSET. After
moving to the new block, the procedure Decode is called. It contains a loop that, whenever it decrements
the content of the active block, increments the content of CACHE. This terminates once the content of the
active block has reached 0, meaning the content of the active block has been correctly stored in CACHE.
Hence the host graph is now enck(S′).

4 From the Simulation to Computation Models

Based on the Sim programs, we can generalise to computation models that are subsets of GP 2, for
which we can define a time measure. One obstacle is time-intensive rule matching. A second one is that
when critical subprograms (bodies of loops and conditions of if and try) fail, they need to be undone,
which can be handled in different ways. The current implementation of GP 2 reverses the relevant rule
applications. The formal semantics uses a stack of graphs to keep track of the state of the host graph
before entering a critical subprogram. Reversion can then be done by a simple pop operation. The
downside to this is that the host graph has to be duplicated every time a loop or a branching statement
is entered, which can add a polynomial factor to the time complexity of the overall program. To avoid
undoing, one wants failed critical subprograms to be null, i.e. they do not change the graph state, meaning
they do not need to be undone.

Models that overcome these obstacles can be implemented to match rules in constant time, which
allows us to assign unit time cost to that operation. They also make undoing redundant, allowing us to
charge no time cost for that.

Another obstacle is that matching a set of rules is nondeterministic, and backtracking that nondeter-
minism can be costly in time or space. This can be addressed at the implementation level. The current
GP 2 compiler for instance picks the first match it finds and does not backtrack. A more general approach
however is to show that within the scope of running a program on an input graph, every rule and rule set
(nondeterministic call of a list of rules) can only have at most one match, effectively making the program
deterministic. This property applies to the class of programs in this paper and is shown in Proposition 2.

We define an efficient model as M = 〈P,I 〉, where P is a set of GP 2 programs and I a set
of GP 2 graphs such that the following two properties are satisfied within the scope of each derivation
sequence starting with some 〈P, I〉 ∈M .

(1) Constant Matching: Every rule matches in constant time.
(2) Critical Subprogram: Every critical subprogram that fails is null.
Let us define the graph space measure of a graph as the number of nodes plus the number of edges.

We do not consider the size of labels in this paper since all labels are of constant size. This measure is
uniform in that it gives unit cost to each node and edge. A discussion about this uniformity can be found
at the end of Section 5.

For an efficient model M , we define the time complexity of a program P of M as the maximum
number of rule calls in terminating derivation sequences starting with P on graphs of a given size.

We show in this section that 〈P, I〉, where P = {Sim(M) |M is a Turing machine} and I = {CG |CG is
a configuration graph}, is an efficient model. The constant matching property is given by Theorem 1,
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which holds because all rules are fast, input graphs have bounded outdegree and a bounded number
of roots, and the programs preserve this boundedness. The critical subprogram property is shown by
Proposition 1.

The remainder of this section consists of aforementioned propositions and a lemma needed to prove
one of them.

Lemma 1. Let P be a critical subprogram in a graph state S. Assume either P cannot fail from state S,
or P can only fail from state S due its first component being a rule or rule set call that fails to match.
Then if P fails from state S, P is null.

Proof. If P cannot fail from state S, the lemma is trivially satisfied. Now assume P fails from S due to
its first component being a rule or rule set failing to match. Since it failed to match, the first component
cannot have changed the host graph, and since it is the first, no other component can have changed the
host graph.

Proposition 1 (Critical Subprogram Property). In Sim(M), given configuration graphs as inputs, every
critical subprogram that fails is null.

Proof. We will argue for each critical subprogram of Sim that Lemma 1 applies.
The conditions of all if and try statements are either rules or rule set calls, satisfying Lemma 1.
Let us now argue for the loop bodies. The procedures Erase, RewindCache, HeadLeft as well as

HeadRight are rule sets, and rewind_blockset is a rule, satisfying Lemma 1.
Reset: The rule overflow can fail, but the other component cannot since it is a try statement whose

branches only contain break which cannot fail.
Increment: This consists of a try statement, so only the branches can fail. Finish cannot fail

because CacheInit is always called before this loop, providing a match. The rule overflow cannot fail
because it is only called when Inc fails and the labels of nodes in CACHE are either 0, 1, or 2. The try
statement cannot fail because its branches cannot fail.

Decrement: The reasoning is analogous to that in the previous paragraph.
Decoding: The try statement cannot fail because its branches cannot fail. For the remainder of

this paragraph, we argue that CacheInc cannot fail either. Increment! cannot fail because it is a
loop. CacheInit always succeeds because the target of the red edge originating from the unmarked
root is unmarked because of the structure of the input graph, and because previous calls of CacheInc
and CacheDec turn the only marked rooted node in this part of the graph unmarked and unrooted with
Finish.

Encoding: The reasoning is analogous to that in the previous paragraph.
The body of the loop contained in ResetBlockset: The rule copy is allowed to fail, and direct

cannot fail since the roots are present due to binit, and the unmarked node is present due to at least one
application of copy.

Simulate: Transition is a rule set at the start of the body and hence allowed to fail. The rest
consists of try statements whose branches call PrevBlock and NextBlock. Prev and Next cannot fail
because we assume that BLOCKSET in the input graph is large enough to accommodate the execution of
the Turing machine. Encode and Decode do not fail, which we will argue for the rest of this paragraph.
EncodeInit and DecodeInit find a match because of the structure of the input graph and because
previous calls of Encode and Decode leave BLOCKSET unmarked and unrooted. Encoding! and
Decoding! are loops and hence cannot fail. Update has a match regardless of the blue root’s location
within BLOCKSET.
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Proposition 2 (Unique Matches). In Sim(M), given configuration graphs as inputs, whenever a rule or
rule set is called, there is at most one match.

Proof. In each rule set, if the left-hand side of two rules have the same structure, their labels are different.
In Transitions in particular, no two rules have the same left-hand side since we consider deterministic
Turing machines. Among rules with different labels but the same structure, at most one can match,
namely the one that has the same labels as the host graph. Among rules with different structures and the
right labels, at most one can match because they differ by an edge or node that is unique in host graphs.
Furthermore, it is easy to check that each rule can only have at most one match in the host graph. Each
rule contains a root with a unique combination of mark and label. And for each node, outgoing edges
can be distinguished in the same way.

5 Results on Time and Space Complexity

In this section, we present theorems on the time and space complexities of the simulation.

Theorem 3 (Time Complexity). Every Turing machine M of time complexity t(n) is simulated by Sim(M)
in time O(t2(n)), where n is the size of the input.

Proof. Given the discussion in Section 4, we can assign unit time to rule and rule set calls and argue time
complexity to be the number of such calls.

First, we will show that simulating one step of M (not counting restarting the simulation) takes
sim(n) = O(s(n)) time. We consider the size of CACHE from the final simulation since it provides an
upper bound. The only sources of non-constant time are PrevBlock and NextBlock. Their complexity
is the worst of the loops Encoding!, Decoding!, HeadLeft!, and HeadRight!. The latter two simply
traverse CACHE, which takes O(s(n)) time. The former two decrement/increment CACHE as a ternary
counter. Their time complexity is proportional to the number of digit operations it takes to decrement
the counter from the number s(n) all the way to 0. The rightmost digit is modified s(n) times, the next
one 1

3 s(n) times, the one after 1
3 · 1

3 s(n) times, and so on. So the total number of digit operations is

∑
logs(n)
k=0 s(n)

(1
3

)k. Using properties of the geometric series, one can see that this is O(s(n)).
In this paragraph, we will show that resetting the simulation and extending the tape takes r(n) =

O(s(n)) time. Consider the loops of Restart. Both RewindCache! and Erase! traverse CACHE and
hence take time O(logs(n)). The loop in ResetBlockset traverses BLOCKSET and thus takes O(s(n))
time.

Next, we will show that the number of times the simulation is restarted is l(n) = O(logs(n)). The
final size of the tape of M is O(s(n) logs(n)). Since the number of represented squares is tripled in each
step, the number of steps is O(log(s(n) logs(n))). Using the formula for the logarithm of a product, one
can simplify this to O(logs(n)).

The total time complexity can be bounded by reset(n)+simulation(n), where reset(n) = l(n) ·r(n) is
the total cost of all resets, and simulation(n) = l(n) · t(n) · sim(n) the total cost of simulating M across all
resets. Using results from previous paragraphs, we get reset(n) = O(s(n) logs(n)) and simulation(n) =
O(t(n) · s(n) logs(n)). Since space complexity s(n) logs(n) can be bounded by time complexity t(n), the
entire simulation takes O(t2(n)) time.

Theorem 4 (Space Complexity). Every Turing machine M of space complexity O(s(n) logs(n)) is simu-
lated by Sim(M) in graph space O(s(n)), where n is the size of the input.
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Proof. During the execution of Sim(M), nodes and edges are only created by setup and Restart,
and none are ever deleted. The numbers of nodes and edges only differ by a constant factor since the
outdegree is bounded, so we will argue for space complexity using number of nodes only.

Initially, after application of setup, BLOCKSET has b(n) = 32 nodes, and CACHE c(n) = 2. Then,
each application of Restart adds one to c(n) and triples b(n). So after k iterations, we have b(n) = 32+k

and c(n) = 2+ k.
The Turing machine needs S(n) = O(s(n) logs(n)) tape squares. This means that there are posi-

tive integers n0 and c such that S(n) ≤ cs(n) logs(n) for all n ≥ n0. So for all n we can say S(n) ≤
cs(n) logs(n)+m, where m = maxn∈{0,...,n0} S(n), a constant.

Assume Restart is called k = logs(n)−2+d times, where d = max(m, logc). For that value of k,
we have c(n)b(n) = 3ds(n) logs(n)+ 3ds(n)d. By definition we have d ≥ m and 3d ≥ c. Furthermore,
we have 3ds(n) ≥ 1. Hence we get c(n) · b(n) ≥ cs(n) logs(n)+m ≥ S(n). So for this value of k, the
graph can store enough tape squares to execute M.

With the aforementioned value of k, the number of nodes in this graph is c(n)+ b(n) = 3ds(n)+
logs(n)+d, which is O(logs(n)+ s(n)) = O(s(n)).

Hence the number of nodes of the graph that is created is bounded by c(n) + b(n), and hence in
O(s(n)).

One might wonder why this space compression is not possible on random access machines. GP 2
does have a C implementation after all. The reason for this is related to how graphs are represented in
random access machines (RAMs), and how much space that takes. Graph edges are usually implemented
as pointers. However the size of pointer addresses grows logarithmically with the number of nodes, since
these addresses are usually stored as binary numbers. So in the context of RAMs, it does not seem very
accurate to assign unit cost to edges. To take this into account, one can use logarithmic space, in which
graphs of s(n) nodes are assigned a cost of s(n) logs(n).

If we use logarithmic space on our model, space compression is nullified since the simulation then
has the same asymptotic space complexity as the machine it simulates. This puts into question whether
uniform or logarithmic space should be used, which is discussed by Van Emde Boas [15]. One may want
to charge more than unit space since in RAMs, edges are represented by pointers whose size grows with
the number of nodes. A related issue can be found in the time measure of RAM models when programs
have to deal with large integers.

6 Conclusion

In GP 2, we have found the same space compression phenomenon that SMMs and KUMs exhibit. Unlike
the other computation models, GP 2 uses rule-based graph transformation. The compression happens
due to use of a graph-based data structure to encode the tape of a Turing machine, which is more space-
efficient with respect to uniform measures.

Using this simulation, we have identified efficient computation models that are subsets of GP 2.
Requiring these models to have certain properties allows us to define rigorous complexity measures.

In future work, the simulation could be refined in the way Luginbuhl [10] refines Van Emde Boas
[15], namely with a more complex data structure that allows for real-time simulation with some form of
space compression.

Furthermore, the simulation could be extended to nondeterministic Turing machines. Extending the
simulation would be straightforward, but the complexity results would need further proofs.
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Many applications of graph transformation (GT) systems require or benefit from control structures
that can be used to restrict and direct GT processes. Most existing GT tools follow a stateful compu-
tational model, where a single graph is repeatedly modified in-place when GT rules are applied. The
implementation of control structures in such tools is not trivial. Common challenges include dealing
with the non-determinism inherent to rule application and transactional constraints when executing
compositions of GTs, in particular atomicity and isolation. The complexity of associated transaction
mechanisms and rule application search algorithms (e.g., backtracking) complicates the definition of
a formal foundation for these control structures. Compared to these stateful approaches, functional
graph rewriting presents a simpler (stateless) computational model, which simplifies the definition of
a formal basis for (functional) GT control structures. In this work-in-progress paper, we propose the
Graph Transformation control Algebra (GTA) as such a foundation. The GTA has been used as the
formal basis for implementing the control structures in the (functional) GT tool GrapeVine.

1 Introduction

There are diverse practical applications of graph transformations (GT) in software engineering, computer
science and beyond [7]. They often require or benefit from control structures that can be used to restrict
and direct the application of GTs. Heckel and Taentzer categorize four approaches for controlling the
application of GTs, including non-terminals, dedicated control expressions, integrity constraints, and
procedural abstraction [6]. Real-world applications often use a combination of these approaches. Most
existing GT tools follow a stateful model of computation where rule applications and control expres-
sions mutate the program state. Multiple rule applications may need to be grouped into atomic units
that are executed entirely or not at all and in isolation of other rule applications. Finding solutions with
non-deterministic rule applications may require search mechanisms like backtracking and heuristic opti-
mization. Implementing control structures that provide such sophisticated mechanisms is not trivial and
their semantics is often not formalized, which impedes formal reasoning about GT programs.

It is well known that stateless computation provides for a simpler semantic model when compared
to stateful computation. We recently presented a functional GT tool (called GrapeVine) that implements
a stateless computational model [20]. This paper presents the formal foundation for the control struc-
tures provided in this tool. We use an algebraic approach to define a set of operations referred to as the
Graph Transformation control Algebra (GTA). In addition to providing a precise semantics for the con-
trol structures provided by GrapeVine, we hope that the GTA will enable future research on functional
GT program analysis and optimization, analogous to the use of the relational algebra for database query
optimization.

The rest of this work-in-progress paper is structured as follows. We start with a brief introduction
to graphs, graph transformations and graph constraints. Sec. 3 provides a description of related work
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on control structures for GT programs. We introduce the Graph Transformation control Algebra (GTA)
and our notion of programmed graph transformation systems in Sec. 4. Sec. 5 provides a description of
an implementation of the control structures in the tool GrapeVine, which are based on the GTA. Finally,
we offer conclusions and discuss current work in Sec. 6.

2 Preliminaries

For the purpose of this paper, we limit ourselves to a definition of basic forms of graphs and graph
transformations (GTs). While many GT tools (including GrapeVine) provide more advanced concepts
(e.g., labels, attributes, typed graphs), the definitions below can easily be extended accordingly. The
reader is referred to [3] for a more complete introduction to graph transformations.
Definition 1 (Graph). A graph is a tuple G ∶ (N,E,s,t) where N is a finite set of nodes, E is a finite set
of edges, and s,t ∶ E →N are total source and target functions, respectively.

Definition 2 (Rule). A (GT) rule is defined as a pair of graph morphisms L
ϕL←Ð I

ϕRÐ→ R, which map
elements of a so-called interface graph I to elements in graph L (called the left-hand side) and graph R
(called the right-hand side), respectively.

Note that while the above definition of rules is more general, GT rules in our tool GrapeVine require
ϕL and ϕR to be injective. Given this restriction, a rule’s interface I is a subgraph of its left- and right-hand
side. For simplicity, we (ab)use set notation to express this property, i.e., I ⊆ R,I ⊆ L.

Definition 3 (Transformation). An application of a rule r ∶ L ϕL←Ð I
ϕRÐ→ R to a given host graph G requires

a match of the left-hand side in G, i.e., the existence of a graph morphism L
mÐ→G. The application deletes

all elements from G that are matched to elements that only appear on the rule’s left-hand side (L− I),
creates elements for any elements that appear only on the rule’s right-hand side (R− I), and embeds
these new elements in the preserved context (m(I)). A more formal definition of a rule application based
on category theory (double-pushout approach) is provided by Corradini et al. [2]. To avoid problems
that may occur when deleting graph elements, a match has to satisfy the so-called gluing condition,
which consists of two parts: (1) the embedding context (attached edges) of any deleted nodes must also
be identified and deleted by the rule (dangling condition), and (2) deleted element must only have one
pre-image in L (identification condition).

The transformation of a given graph G into a graph G′ by applying rule r at a valid match m is
denoted as G

r,m↝ G′.

As mentioned before, we opted against adding more advanced concepts to our formalization of rules
and transformations, e.g., (negative) application conditions and rule parameters. While GrapeVine pro-
vides these concepts, they are not the focus of this paper. We do, however, introduce the notion of graph
constraints,[11] as constraints are one of the mechanisms used to control the application of GT rules [6].

Definition 4 (Atomic Constraint). An atomic (graph) constraint I
cÐ→ T is defined as a graph monomor-

phism between two graphs I and T . A graph G satisfies c (denoted as G ⊧ c) if for every monomorphism

I
hÐ→G there is a monomorphism T

fÐ→G such that h = f ○c.

Definition 5 (Constraint). A (graph) constraint is inductively defined as either an atomic graph con-
straint c ∶ I → T , a negation of a graph constraint (i.e., if κ is a graph constraint, so is ¬κ), or the
disjunction of two graph constraints (i.e., if κ1 and κ2 are graph constraints, so is κ1∨κ2).

Now that we have introduced constraints, we extend our definition of graphs and transformations to
constrained graphs and transformations on constraint graphs.
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Definition 6 (Constrained Graph). A constrained graph is a tuple (G,K) where G is a graph and K is a
finite set of graph constraints satisfied by G, i.e, ∀κ ∈K ∶G ⊧ κ .

Definition 7 (Transformation (of a constrained graph)). A transformation of a constrained graph (G,K) r,m↝
(G′,K) exists, if there exists a corresponding transformation for the unconstraint graph G

r,m↝ G′, where
the resulting graph satisfies all constraints, i.e., ∀κ ∈K ∶G′ ⊧ κ .

From here on, we only consider constrained graphs and transformations on constrained graphs. The
reader should therefore assume that we are referring to a “constrained graph” whenever we use the term
graph without explicitly mentioning otherwise.

A transformation G
r,m↝ G′ is also called a direct linear derivation. In general, there are many possible

matches for a rule in a given graph, i.e., multiple direct linear derivations are possible. We may just write
G

r↝G′ to denote any direct linear derivation, if we do not care about the match.

3 Related work

Most GT tools offer some constructs to control the application of GT rules. The inherent complexity
related to stateful computation and non-deterministic choice between possible derivations complicates
the implementation of GT control structures. To the best of our knowledge, PROGRES[16], Grape [18],
and GP [12] appear to be the only GT tools that implement backtracking mechanisms, capable of recon-
structing graphs at non-deterministic choice points. The PROGRES project has since been discontinued
since its platform is no longer available. Grape is still available but no longer under further development,
in part due to the complexity of maintaining the implemented backtracking system. Work on GP appears
to continue but the tool is described as experimental and not publicly available (to our knowledge). The
execution of GP programs requires the York Abstract Machine (YAM) which handles a sophisticated
data structure to keep track of non-determinism, choice points and environment frames.

PROGRES and GP provide a formalized semantics for their control structures. The semantics defi-
nition for PROGRES is complex and spans over three hundred pages. The formalization of GP is com-
parably simple. The original language (GP1) consist of only four types of commands: non-deterministic
rule application, sequential composition, branching, and iteration [12]. Its successor (GP2) provides
additional constructs, including a second kind of branching statement and an explicit operator for non-
deterministic choice between sub-programs [13]. Moreover, GP2 changed the semantics control struc-
tures in order to allow for efficient implementation of branching and looping. In particular, failures in
conditions of branching statements or loop bodies no longer enforce backtracking behaviour. While GP
programs theoretically associate all reachable output graphs to a given input graphs, the program com-
putation may not succeed. This is because the GP search mechanism uses depth-first search and the
program may diverge [12].

AGG is another GT tool with a formally defined execution semantics [17, 15]. However, AGG avoids
backtracking altogether and uses a random selection when making a non-deterministic choice during
rule application. FUJABA has control structures based on a combination of UML activity diagrams
and GT rules [10]. The semantics has not been defined formally and there is no backtracking. GrGen
provides a textual language for controlling GT rule applications but also without a formal semantics and
backtracking [4].

GReAT is a GT tool with dedicated support for model transformations [1]. It is notably different
from other tools in that it support arbitrarily many input and output graphs. Its control structures use a
combination of control-flow diagrams, structuring constructs and OCL-based model constraints.
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4 Programmed Graph Transformation Systems with GTA

This section is divided in two parts. We begin by defining our notion of a programmed graph transfor-
mation system (GTS) and then discuss our rational and reasoning behind the choices we made.
Definition 8 ((programmed) Graph Transformation System (GTS)). We define a (programmed) Graph
Transformation System (GTS) as a tuple (R,C,P), where R is a set of rules, C is a set of constraints, and
P is a set of graph programs.

In this paper, we are mainly concerned with defining a formal basis for the programs (P) in a GTS.
We define the graph transformation control algebra (GTA) for that purpose. GTA operators work on
a common data type, a sequence of graph sets, referred to as a graph set enumeration (or “grape” for
short) in the rest of this paper. We will define this data type first. Let G denote the domain of graphs.
Definition 9 (Graph set enumeration (grape)). A graph set enumeration (or grape for short) is a non-
empty sequence

...
G ∶ ⟨Ḡ1,Ḡ2, ..,Ḡn⟩ where each Ḡi is a finite set of graphs, i.e., Ḡi ⊂G. Let

...
G denote the

domain (data type) of grapes.

The GTA has twelve operators representing binary relations on grapes. We first introduce their syntax
and then proceed to defining their semantics.
Definition 10 (Graph Program (syntax)). Given a GTS (R,C,P), c ∈C and r ∈ R, each program p ∈ P is
a GTA expression, which is defined as one of the following:

• (c) and (c) are GTA expressions, called constrain and unconstrain, respectively ;

• ↠(r) and ↝↝ (r) are GTA expressions, called derive and derive-choice, respectively;

• ⊚(n,≲) with n ∈N and a total order ≲ on graphs is a GTA expression, called select;

• �(e1,e2), ÷(e1,e2) and ∼..(e1,e2) are GTA expressions, if e1 and e2 are GTA expressions; They are
called sequence, alternative, and alternative-choice respectively;

• ↻(e) is a GTA expression called loop if e is a GTA expression;

• ↬(c,e) is a GTA expression called search if e is a GTA expression;

• � and ≢ are GTA expressions called new and distinct, respectively.

Graph programs that make use of any of the two “choice” expressions (↝↝ and ∼.. ) are called non-
deterministic, and deterministic, otherwise.

Definition 11 (Deterministic Graph Program (semantics)). A deterministic graph program p is inter-
preted as a function mapping grapes to grapes, i.e., JpK ∶

...
G→

...
G. The program semantics is based on the

interpretation of the individual GTA operators as functions
...
G→

...
G. Most of them are interpreted as total

functions, with the exception of loop and search (↻,↬) which are not guaranteed to terminate.

• Constrain and Unconstrain ( and )
The purpose of these functions is to declare and undeclare graph constraints, respectively. (c)
declares constraint c on all the graphs in the last element of a given grape that satisfy c. All other
graphs are removed.
J (c)K(⟨..,Ḡn⟩) = ⟨..,Ḡ′

n⟩ with Ḡ′

n = {(G,K+{c})∣(G,K) ∈ Ḡn∧G ⊧ c}
(c) removes constraint c from the graphs in the last element of a grape:

J (c)K(⟨..,Ḡn⟩) = ⟨..,Ḡ′

n⟩ and Ḡ′

n = {(G,K−{c})∣(G,K) ∈ Ḡn}
Please note that whenever we use the notation of ⟨..,⟩ on two sides of a definition (like above), we
require that “..” stands for the same sequence of elements. We use the notation “..a” and “..b” to
refer to different sequences of elements.
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• Derive (↠)
Function derive computes all direct linear derivation of each graph in the last element of a given
grape and extends the given input grape with an element that contains all resulting graphs, i.e.,
J↠(r)K(⟨..,Ḡn⟩) = ⟨..,Ḡn,Ḡn+1⟩ where Ḡn+1 = {G′∣∃G ∈ Ḡn ∶G

r↝G′}
• Select (⊚)

Function Select (⊚(k,≲)) reduces the last element of a given grape to at most k elements. The
selection is determined by a total order on graphs ≲. Formally, J⊚(k,≲)K(⟨..,Ḡn⟩) = ⟨..,Ḡ′

n⟩, with
Ḡ′

n ⊆ Ḡn∧∣Ḡ′

n∣ ≤ k∧∣Ḡ′

n∣ ≤ ∣Ḡn∣∧∄G ∈ Ḡn− Ḡ′

n,G
′ ∈ Ḡ′

n ∶G′ ≲G

• Sequence (�)
�(a,b) composes two GTA expressions sequentially by using relational composition, i.e., J�(a,b)K=
{(

...
G,

...
K) ∈

...
G∣(

...
G,

...
H) ∈ JaK∧(

...
H,

...
K) ∈ JbK}.

• Alternative (÷)
÷(a,b) composes two GTA expressions (a and b) as alternatives by extending a given grape with
a new element that is the union of the last elements of the grapes produced by interpreting the two
expressions, i.e., J÷(a,b)K(

...
G ∶ ⟨..x⟩) = ⟨..x,Ō1∪Ō2⟩ with JaK(

...
G) = ⟨..y,Ō1⟩ and JbK(

...
G) = ⟨..z,Ō2⟩.

• Distinct ≢
Graph exploration may produce graphs that are identical (up to isomorphism). The distinct oper-
ator (≢) removes all graphs from the last element of a given grape, if they are identical to any other
graph in the grape. Formally, ≢ is defined as

J≢K(⟨Ḡ1, ..,Ḡn⟩) =
⎧⎪⎪⎨⎪⎪⎩

⟨Ḡ1, ..,J≢K(Ḡn−{D})⟩, if ∃D,J ∈ ⋃1≤i≤n Ḡi ∶D ≠ J∧D ≅ J
⟨Ḡ1, ..,Ḡn⟩, otherwise

• New (�)
The new operator is used to start a new grape. It takes a grape as input but “forgets” all but the
last element in the sequence. This is useful to restrict the distinct’s operators ability to “look back”
in the derivation history to find identical graphs. new is defined as J�K(⟨..,Ḡn⟩) = ⟨Ḡn⟩.

• Loop (↻)
↻(e) is interpreted as a function that recursively interprets GTA expression e on the most recently
computed grape while the last element is not empty, i.e,

J↻(e)K(
...
G) =

⎧⎪⎪⎨⎪⎪⎩

...
G, ifJeK(

...
G) = ⟨..,∅⟩

J↻(e)K○ JeK(
...
G) otherwise

• Search (↬)
↬ (c,o) is interpreted as a (recursive) function that repeatedly interprets a GTA expression o on
the most recently computed grape while none of the graphs in the last element of the current grape
satisfy constraint c and the last element is not empty, i.e,

J↬(c,o)K(
...
G ∶ ⟨..,Ḡn⟩) =

⎧⎪⎪⎨⎪⎪⎩

...
G, if Ḡn = ∅∨∃G ∈ Ḡn ∶G ⊧ c
J↬(c,o)K○ JoK(G̈) otherwise

Definition 12 (Non-Deterministic Graph Program (semantics)). A non-deterministic graph program p
defines a binary relation between grapes, i.e., JpK ⊂

...
G×

...
G. The two additional GTA operators available

to non-deterministic programs are↝↝ and ∼.. , which are also interpreted as binary relations on grapes.
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• Derive-choice (↝↝)
↝↝ is interpreted as a relation that extends the classical notion of non-deterministic rule application
to the data type of grapes. From an operational perspective, this operation computes a direct linear
derivation of each graph in the last element of a given grape and returns a copy of the input grape
with an added element that contains all resulting graphs.
J↝↝(r)K = {(⟨..,Ḡn⟩,⟨..,Ḡn,Ḡn+1⟩) ∈

...
G×

...
G∣∀G ∈ Ḡn ∶ ((∃!X ∈ Ḡn+1 ∶G

r↝ X)∨(∄Y ∈G ∶G r↝Y))∧
∣Ḡn+1∣ ≤ ∣Ḡn∣}.

• Alternative-choice (∼.. )
∼.. is interpreted as a relation that makes a non-deterministic choice between the relations implied
by the two GTA expressions, i.e., J∼..(a,b)K = JaK∨ J∼..(a,b)K = JbK.

Properties of the GTA and Rationale

Habel and Plump have shown that any graph programming language is computationally complete, which
is capable of nondeterministic rule application, sequential composition of program statements and itera-
tion over program statements [5]. They also showed that this set of operators is minimal. The rule appli-
cation operator (⇒R) in their minimal list incorporates both forms of non-determinism that are usually
associated with GT systems, i.e., non-deterministic rule selection and non-deterministic rule matching.
The GTA has separate operators for rule choice (÷, respectively ∼.. ) and rule matching (↠, respectively
↝↝). However, it is easy to see that the semantics of operator⇒R can be achieved by combining the two
non-deterministic GTA operators ∼.. and ↝↝.

Since GTA has operators for sequential composition and iteration, it follows that the set of operators
{↝↝,∼.. ,�,↻} is computationally complete (and minimal). Substituting the non-deterministic GTA op-
erators with their deterministic counterparts will obviously also yield a computationally complete (and
minimal) set of operators {↠,÷,�,↻}.

The reason for including both non-deterministic and deterministic operators for rule application and
choice in the GTA is that we want to provide the programmer with control over and assurances about the
GT process. While the notion of non-determinism is theoretically simple and appealing, since it defers
decisions about concrete execution to the design of the underlying engine, it also becomes problematic for
practical applications. This is because programmers cannot make assumptions on how non-determinism
is resolved. Non-deterministic choice must be implemented with deterministic algorithms (unless true
randomness is used). Choices made during program execution may prevent computation of a desired
result, unless the execution engine has mechanisms to “track back” and explore other options. As men-
tioned earlier, few GT tools have that capability due to complexity of the associated execution engine.
Even with backtracking, graph programs may diverge during depth-first exploration even if a solution is
theoretically computable. Moreover, backtracking is expensive and may lead to efficiency problems if
performed by default [13]. This is the reason why GP allowed programmers to disable backtracking and
why GP2 has changed the semantics of its branching and looping operators to no longer enforce back-
tracking by default. To some degree, including the two “choice” operators in the GTA serves a similar
purpose. They can be used when it is sufficient to find a possible choice rather than needing to explore
the range of possible choices.

Of course, breadth-first exploration has its own challenges due to the well known “state-space explo-
sion problem”. To make this feasible, the GTA has operators for reducing the search space. In particular
the Distinct operator (≢) was introduced to detect “collisions”. This operator is the main reason to con-
sider grapes rather than simple graph sets as the common data type for computation. The Select operator
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(⊚) provides a way to limit the search to an upper number of ranked graphs to explore (based on a given
total order). For similar reasons (to restrict the search space), we included graph constraints in addition to
GT rules. Constrain ( ) and Unconstrain ( ) expressions provide programs with ways to (temporarily)
restrict the exploration of possible computation.

5 Implementing the GTA within GrapeVine

An implementation of GTA-based graph programs requires a functional GT tool in which graphs are
immutable first-class objects rather than treating the graph as “singleton” global variable for stateful
computation. We have recently proposed GrapeVine as a tool to meet this criterion [20]. We start this
section with a short introduction to this tool, before discussing graph programs in GrapeVine.

5.1 GrapeVine - A short overview

GrapeVine is implemented on top of the Neo4J graph database and derives much of its scalability from
that architecture. The tool is a fundamentally new revision of the earlier tools Grape [18] and Grape
Press [19]. Compared to these earlier tools, the main novelty in GrapeVine is its functional computational
model, where graphs are considered immutable objects.

GrapeVine uses a textual language for defining GT rules, constraints and programs. That language is
provided as an internal DSL (domain-specific language) to the general-purpose programming language
Clojure. GrapeVine has been integrated with the Gorilla. Gorilla is a browser-based computational
notebook for Clojure, similar to other computational notebook technologies, like for example Jupyter.
Using this platform, GrapeVine supports visualization of graphs, rules, and constraints (among other
things) [19]. GrapeVine can also be used independently of the computational notebook UI; GrapeVine
programs are regular Clojure programs, which run on the Java Virtual Machine (JVM) and can thus
integrate with any other JVM language, such as Java, Kotlin, Scala, Groovy, etc.

5.2 GrapeVine control structures

When implementing GTA-based control structures for GrapeVine we used the constructs provided by the
host language (Clojure) as much as possible and avoided the creation of unnecessary “syntactic sugar”.
For example, rule (derivations) can simply be called by the name of the rule, i.e., declaring a rule creates
rule application derivation functions with that name. Similarly, declaring a constraint automatically
creates functions to check that constraint (positively and negatively).

Tab. 1 provides a correspondence between the syntax used in GrapeVine (Clojure) graph programs
and the abstract syntax of GTA expressions. As mentioned above, rule application is simply a call to
a function with the rule’s name (with an added tilde if non-deterministic rule application is sufficient).
Similarly, constraint checks are done by calling a constraint by name (with an added minus sign for
negation). Graphs are constrained and unconstrained using the schema/schema-drop forms. In addi-
tion to a simple “While possible” loop, GrapeVine has two variations of an “Until” loop (based on the
↬ operator). The behaviour of these variants is similar but they differ in one detail, namely whether
or not collisions are avoided (using the GTA ≢ operator). The reason for including an “Until” operator
without collision check is to accommodate conditional looping behaviour in programs with side-effects,
e.g., programs that wait for input events.
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Description GTA expression GrapeVine Syntax
Rule application (deterministic) ↠(r) r

Rule application (non-deterministic) ↝↝ (r) r∼
Add constraint c (c) (schema c ..)

Add constraint negated c (¬c) (schema c- ..)

Remove constraint c c (schema-drop c ..)

Remove negated constraint c (¬c) (schema-drop c- ..)

Check constraint c �( (c), (c)) c

Check negated constraint c �( (¬c), (¬c)) c-

Sequence �(e1,e2) (-> e 1 e 2 ..)

Alternative (deterministic) ÷(e1,e2) (|| e 1 e 2 ..)

Alternative (non-deterministic) ∼..(e1,e2..) (||∼ e 1 e 2 ..)

Loop (while possible) ↻(e) (->* e ..)

Until (without collisions check) ↬(c,e) (->?* c e ..)

Until (with collision check) ↬(c,�(e,≢))○ � (->?+ c e ..)

New � newgrape

(creates a grape with a single element � (⟨(∅,∅)⟩) (newgrape)

containing an empty graph
if called without argument)

Distinct ≢ dist

Select ⊚(k,v) (select k v)

Table 1: Correspondences between GrapeVine control structures and GTA expressions

While the Distinct operator is automatically used in one of the looping constructs (->+), GrapeVine
also provides a dist control structure, which can be used to remove duplicate graphs in longer sequences
of operations.

The newgrape function is overloaded (for convenience). If called without any parameter (without a
grape), it returns a new grape with a single element that contains a single, empty, unconstrained graph.

Note that all GrapeVine control structures are variadic, i.e., they allow an arbitrary number of param-
eters. This is indicated by the ellipses in right column of Tab. 1.

5.3 GrapeVine control structures - a simple example

Let us look at a simple example of a graph program in GrapeVine to get an impression. We use the
example of the well-known ferryman problem [21]. In that problem, a ferryman needs to (safely) trans-
port three things (a goat, a wolf, and a cabbage) from one side to the other side of a river. He can only
transport one thing at a time. The wolf will eat the goat and the goat will eat the cabbage, respectively, if
left unattended.

Fig.1 shows three rules and three constraints modelled within GrapeVine in support of solving the
ferryman problem. (For simplicity, we omit the textual definition of these rules and only show their
generated graphical view. Also, please note that for artistic freedom, the cabbage was exchanged by a
grape.) Rule setup-ferryman creates the initial graph with the two river sides and all items on one side.
Created graph elements are shown in green. The other two rules ferry one over and cross empty specify
the two possible actions, namely to cross with or without an item. Deleted graph elements are shown in
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Figure 1: Ferryman problem (rules and constraints)

red.

The shaded isomorphism (“ISO”) box in the two rules specify that these rules must use isomorphic
subgraph matching. (By default, GrapeVine does not enforce isomorphic matches, i.e., multiple elements
on a rule’s left-hand side do not need to match to separate elements in the host graph.)

The bottom half of Fig.1 shows three (atomic) graph constraints. In GrapeVine, basic graph con-
straints I

cÐ→ T are visualized by using black colour for elements in I (“if” pattern) and blue colour for
elements in T (“then” pattern). In the case of this example, the three graph constraints have the form
∅ cÐ→ T , i.e., they represent simple existence constraints ∃T . Such constraints are also called basic con-
straints [11]. Note that pattern matching for constraints always uses isomorphic matching semantics.

To better distinguish between the names of rules and constraints in graph programs, it is a convention
in GrapeVine to append an exclamation mark to the names of constraints.

Fig.2 shows a GrapeVine program for solving the ferryman problem. The program should be un-
derstandable based on the above definition of control structures and the definition of the rules and con-
straints. The call to newgrape without a parameter creates a new grape with an empty graph. After
setting up the initial state (applying rule setup-ferryman), we enter a loop that recurs until one of the
graphs in the last element of the current grape satisfies the constraint all on the other side!.

Note that the program in Fig. 2 is guaranteed to find a solution if there exists one. If we had used
non-deterministic operators, the execution mechanism may or may not find a solution, depending on
how it was implemented. A mechanism that resolves non-deterministic choices by a fair process (e.g.,
by using true randomness) will eventually find a solution, but without bounded time. A mechanism that
uses depth-first search could cause the program execution to diverge.

Fig. 3 shows an alternative, yet equivalent program for solving the ferryman problem. This program
declares the two constraints we checked manually in Fig. 2 as invariant constraints on the graphs in the
grape. Once declared, GrapeVine will ensure that only valid derivations are possible.
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(-> (newgrape) setup-ferryman

(->?+ all_on_the_other_side!

(|| ferry_one_over cross_empty)

wolf-can-eat-goat!-

goat-can-eat-grape!-)))

Figure 2: A program to solve the ferryman problem

(-> (newgrape)

(schema wolf-can-eat-goat!- goat-can-eat-grape!-)

setup-ferryman

(->?+ all_on_the_other_side

(|| ferry_one_over cross_empty)))

Figure 3: An alternative program, using schema constraints

5.4 Efficiency considerations

An important factor for making the above described approach to GT programming feasible is the ability
to avoid exploring graph states that have been seen before (by means of the ≢ operator). This operator
requires that previous versions of graphs are efficiently accessible (and comparable). Moreover, parallel
exploration of possible choices generate non-linear version histories of graphs that must be maintained
efficiently. GrapeVine uses a fully-persistent data structure for maintaining graphs in a graph database
(Neo4J). Details on that persistent data structure have been reported in [20] and interested readers are
referred to that publication. However, one new aspect that we want to comment on is the implementation
of the ≢ operator. While graph isomorphism checks are expensive, Rensink has demonstrated that hashed
graph “certificates” can be used to speed up similarity checking in practice based on the idea of bisim-
ulation [14]. GrapeVine uses a similar approach for comparing graphs for collisions. Moreover, since
graphs are immutable, their hash certificates are computed only once, at creation time and then stored
in the database using an efficient indexed search structure. This means that the run-time for similarity
checks only grows logarithmically in practice (in relation to the graphs in the grape).

When compared to some other GT tools, specifically those that perform all computation in main
memory, GrapeVine has a higher latency when performing graph transformations. This is due to its
client-server architecture between the Clojure (JVM) client and the database server. However, GrapeVine’s
performance does not suffer much with increasing number and size of graphs, however.

While a comprehensive performance analysis is out of the scope of this paper, we have conducted a
preliminary experiment with the program in Fig. 1. The platform was a 2017 iMac Pro with a 3Ghz Intel
Xeon processor running both the database server (Neo4J) and GrapeVine in separate Docker containers
connected by a bridged network.

Running the Ferryman program in Fig. 1 on an empty graph database takes approximately 7 seconds
and creates 27 graphs in the process. The execution time of the program remains the same (approximately
7 seconds) even after running the program 1000 times and creating 27,000 graphs in the database. (Note:
GrapeVine does not automatically “garbage collect” graphs, but the user can trigger a garbage collector
manually [20].)

If we modify the program in Fig. 1 to use the iteration without a collision check (->?* operator
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instead of ->?+), the program creates 216 graphs and takes 52 seconds.
Currently, GrapeVine does not support backtracking when using its non-deterministic operators

(based on derive-choice and alternative-choice). We can therefore not directly compare its breadth-
first (deterministic) operators with a depth-first search strategy within exactly the same tool. However,
GrapeVine’s predecessor (Grape) supports backtracking-based execution of non-deterministic graph pro-
grams. It has the same architecture (Clojure run-time with Neo4J database back-end.) It is therefore a
suitable candidate for comparison. Grape is actually not able to compute a solution for the ferryman
problem as stated in Fig. 1. This is because it would always explore non-deterministic alternatives in
the order they are stated. In this case, this would result in a diverging program run that would take the
goat back and forth forever. Note that this problem would not go away if the order of the “alternative”
statement was reverse. In that case, the goat would be moved and the ferryman would travel empty for-
ever. [18] provides a modified program that uses bounded depth-first search (by giving the ferryman a
budget of seven moves). That program takes approximately 50 seconds to find a solution on the same
machine as above. Of course, we note that Grape does not check for collisions when exploring solutions
depth-first. Doing so would certainly increase efficiency. However, the comparison shows that the de-
terministic (breadth-first) operators in GrapeVine have a performance that is competitive with traditional
(backtracking-based) solutions to resolve non-determinism.

6 Conclusions and current work

While graph transformations have a well-defined semantics, the control structures used for programming
with GTs are often either of limited expressiveness (but formalized) or they are expressive but lack a
formal semantics. Implementing non-deterministic control structures in GT tools that use stateful com-
putation requires complex and often inefficient processing such as backtracking on graph exploration.
Depth-first search strategies do not guarantee that a solution is found, as graph programs may diverge.
For example, a solution for the above-mentioned ferryman problem may not be found in GT tools that
implement non-deterministic rule application based on depth-first search and backtracking unless all
previously visited graphs are kept and compared to the current execution state for collisions.

Functional GT tools avoid many of the pitfalls of stateful GT tools, since graphs are immutable, i.e.,
derivations do not destroy (modify) the input graph. In this paper, we have defined a formal foundation
for control structures used for functional GT, called the Graph Transformation control Algebra (GTA).
GTA-based programs can be written as deterministic functions, i.e., they guarantee that all graphs that
can be derived via a particular program can be returned. To make this feasible, GTA operators provide
means to limit the exploration of the search space, for example by detecting collisions, checking graph
constraints and selecting graphs based on a total ordering heuristic. The GTA also provides the traditional
non-deterministic operators, which leave decisions on how to perform choices up to the implementer of
the execution mechanism.

We have shown the implementation of GTA-based control structures within the functional GT tool
GrapeVine. Our current work is on performing a more thorough performance evaluation with more
realistic problems to provide more evidence for the feasibility of the proposed approach.

References

[1] Aditya Agrawal, Gabor Karsai, Sandeep Neema, Feng Shi & Attila Vizhanyo (2006): The design of a lan-
guage for model transformations. Software & Systems Modeling 5(3), pp. 261–288, doi:10.1007/s10270-

http://dx.doi.org/10.1007/s10270-006-0027-7


J. H. Weber 51

006-0027-7.

[2] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel & M. Löwe (1997): Algebraic Approaches to
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Graph transformation systems often contain large numbers of similar rules, leading to maintenance is-
sues as well as performance bottlenecks during rule applications. Previous work introduced variability-
based graph transformations as a paradigm for explicitly managing variability in rules, successfully
addressing these issues. However, no previous work investigated whether variability-based graph
transformations can also lead to benefits during the automated analysis of graph transformations,
particularly during model checking, in which the main performance bottleneck is the combinatorial
explosion arising during state space exploration.

In this paper, as an initial approach for model checking of variability-based graph transforma-
tions, we present an extension of an existing symbolic model checking technique. The existing
technique, called Gryphon, converts the graph transformation system into a symbolic encoding and,
from there, into the input format of a hardware model checker. We adapt Gryphon’s encoding to
incorporate information on variability, which reduces the size and complexity of the overall encod-
ing since it is now derived from a smaller set of rules (some of them being variability-based rules
that represent several similar rules). In a preliminary evaluation, we show that our extension leads to
performance benefits in a standard model checking scenario.

1 Introduction

Model-Driven Engineering (MDE) is a software engineering paradigm that promotes the use of models
and transformations as primary artefacts, allowing for the abstraction of non-essential aspects [23]. MDE
promotes model transformations as a key enabling technique for automatically generating models to
reduce errors and save implementation efforts. One of the main paradigms in model transformation is
algebraic graph transformation (AGT [16]) which allows the specification of transformation rules in a
high-level, declarative manner using model transformation languages. Sometimes, one wants to specify
many similar transformation rules that have many commonalities but differ in some parts. In that case,
these similarly-structured rules can be merged while preserving their structure by specifying variability
points on diverging elements, introducing variability on transformation rules. Therefore, by expressing
variability points on diverging graph elements in transformation rules, we can merge rules and keep the
number of total rules minimal. Doing so, one obtains a new concept of graph transformation rules with
variability, called variability-based graph transformation in previous work [41]. As a further benefit, one
can improve the performance of such graph transformations by providing a variability-aware execution
mode that can make the rule application procedure faster and more scalable [41].

When verifying the correctness of regular AGT rules, model checking has proven to be a powerful
tool of increasing interest [36]. However, current state-of-the-art model checking tools do not support
variability-based graph transformation. But why would it be desirable if they did so? Model checking
tools currently do not consider variability, implying that each rule variant has to be made explicit in
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a separate rule. From a model checking perspective, this leads to redundant computational effort when
dealing with rules with many shared actions, resulting in a sub-optimal model checking approach in terms
of runtime behaviour. A model checking approach that addresses variability as part of the model checking
procedure without considering each rule variant as a separate rule could lead to runtime improvements.

To our knowledge, no previous work has addressed variability in model checking of graph transfor-
mation systems. Related work (discussed in Section 6) addresses variability in model checking for other
formalisms, such as labelled transition systems [14, 13] and Markov decision processes [11].

This paper introduces an initial approach for model checking graph transformations with variability.
We propose an extension of the open-source, lightweight symbolic model verification technique Gryphon
[19]. Gryphon uses a symbolic encoding to represent graph transformation systems to bounded first-
order relational logic. Gryphon assumes a bounded universe, implying that it does not support arbitrary
creation and deletion of nodes. However, it does support negative application conditions (NACs) as well
as arbitrary creation and deletion of edges. We study the working assumption that addressing variability
explicitly, as part of the model checking procedure, may help to increase the performance of the model
checker, compared to enumerating all rule variants explicitly and feeding them as input to the model
checker. Thereby, we will be answering the following research question:

RQ: Does the direct support for variability-based rules in Gryphon decrease the execution time for
model checking of graph transformations of the kind supported by Gryphon?

To answer this research question, we propose an extension of Gryphon’s symbolic encoding that
supports variability-based graph transformations. We further present an implementation of the resulting
encoding, leading to the first implementation of a variability-based model checking approach for graph
transformations. Like Gryphon, the resulting approach is restricted to a certain type of graph transforma-
tions: double-pushout graph transformations, restricted to rules that can create and delete edges and can
have NACs. The considered transformation kind is expressive enough to support previous scenarios from
the literature on model checking of graph transformations, such as dining philosophers, interlocking rail-
way systems, and pacman (provided as examples in Gryphon’s presentation [18, 19]). However, several
other examples from the literature cannot be handled by our approach, such as circular buffers [35],
malaria surveillance [8], knowledge graph management [9], and health information system [7] that re-
quire creation, deletion, cloning and/or merging of nodes.

Using the encoding, we answer the research question in an empirical performance evaluation. This
evaluation compares the execution time of model checking with standard Gryphon and a Gryphon version
using the modified encoding.

2 Preliminaries

Graph transformations

We consider the paradigm of algebraic graph transformations (AGT), in particular the formalization
of graph morphisms and graph transformation rules based on the double-pushout approach [16]. A
graph morphism m : G→ H is a structure-preserving mapping between two graphs, in the sense that
edges are mapped in a way that respects their source and target. A transformation rule t is defined as
t = (L l←− I r−→ R, Nac), consisting of the following elements: a left-hand side graph L and a right-hand
side graph R, along with two graph morphisms l and r, both being inclusions, an interface graph I,
satisfying I ⊆ L and I ⊆ R, and a set Nac (negative application conditions) of graph morphisms of the



Albers, Damasceno & Strüber 55

form n : L→ N. In the rest of this paper, we consider a restricted notion of rules in which the node sets
of L, I, and R are identical.

Rules are applied to a given host graph in order to obtain a result graph. The application of a trans-
formation rule t on a given start graph G assumes an available injective graph morphism m : L→ G that
matches L to G. To support node deletions in a consistent way, m needs to fulfill a dangling edge con-
dition: if a node n is to be deleted by the rule application, the rule application has to delete all adjacent
edges of the node as well. For the restricted kind of rules we consider (which cannot delete or create
nodes), this condition is always fulfilled. Furthermore, m needs to satisfy the NACs. Intuitively, each
NAC graph N is interpreted as a pattern whose existence in the host graph is forbidden. More formally,
it has to be checked that for none of the NACs there exists morphism n′ : N → G s.t. m = n′ ◦ n. If m
fulfills these conditions, it is called a match.

Given a match, a rule application is executed as follows: First, for each graph element that is part of
L and that is not part of the interface graph I, the element identified by m is deleted. Second, for each
graph element that is part of R and that is not part of interface graph I, a graph element is created; new
graph elements are “glued” to existing ones as specified by m and r.

The graphs supported by our technique can have types and attributes. We omit providing details of
the formalization of these concepts; the interested reader is referred to Ehrig et al.’s [16] formalization.

Example. We consider the Dining Philosopher’s problem as presented in [19], which was originally de-
signed to illustrate challenges concerning deadlocks, making it a well-suited problem for model check-
ing. The Dining Philosopher’s problem starts out with a group of n philosophers around a table on which
there are n plates and n forks (i.e., one fork on the left, and one fork on the right of each philosopher). A
philosopher can either be hungry, thinking, or eating. Whenever a philosopher transitions from thinking
to hungry, it wants to eat. In order for a philosopher to be able to eat, it is required to have 2 forks
assigned to that philosopher. Whenever a philosopher is done with eating, it releases both forks so that
another philosopher can take them. Figure 1 captures a standard specification of the Dining Philoso-
pher’s problem in terms of graph transformation rules, inspired by [19]. In this example, the following
five graph transformation rules are considered:

• Rule hungry transitions a philosopher’s state from thinking to hungry.

• Rule left leads to a philosopher picking up their left fork (indicated by holds), provided that no
philosopher (including themselves) already holds that fork.

• Rule right leads to a philosopher picking up their right fork (indicated by holds), provided that no
philosopher (including themselves) already holds that fork.

• Whenever a philosopher is assigned to both a left and right fork, they can start eating. This be-
haviour is specified in rule eating.

• Whenever a philosopher is done eating, they release both forks, which is specified in rule release.

Note that these transformation rules follow an integrated syntax with respect to the formal definition;
graph elements are annotated with labels. The labels delete, preserve, and create represent the sets L\I, I,
and R\ I, respectively. The label forbid, together with a hash symbol and the index of a NAC, represents
the set N \ L for the given NAC. In the example, rule left has two NACs, the first of them (forbid#1)
ensuring that philosophers cannot pick up a fork that they already hold.
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(a) Rule left (b) Rule right

(c) Rule hungry (d) Rule eating

(e) Rule release

Figure 1: Graph transformation rules of the Dining Philosopher’s problem

Figure 2: Variability-based rule takeFork
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Variability-Based Graph Transformations

Variability-based graph transformations are an extension of standard graph transformations, which allows
to express several similar rules in a “single-copy” representation. Individual, diverging elements (in the
scope of this paper, edges) that are specific to some, but not all of the rules are annotated with presence
conditions. A presence conditions is a boolean formula over a given set of features F (a.k.a. variation
points), specifying a condition under which an annotated element is present. Given a variability-based
rule, flat rules can be derived by binding each feature from F to either true or false, and removing those
elements whose presence condition evaluates to false.

A variability-based transformation rule t̂ is formalized as t̂ = (t, F , pc), where t is a standard graph
transformation rule (the “maximal rule” with all elements), and pc : (Lt ∪Rt)→ Bool(F ) is a pres-
ence condition function which maps rule elements to a propositional formula over the set of features F
(defaulting to true, unless explicitly stated). To apply a variability-based graph transformation rule, intu-
itively, the first step is to configure it, that is, bind each of its features to either true or false, and remove
all elements from t whose presence conditions evaluate to false. Configuring a variability-based graph
transformation rule that way yields a flat rule that can be applied in the standard way (described above).
The configuration can be either done manually by the user, or automatically by the configuration engine,
where the latter leads to the notion of a variability-aware execution engine described in [41, 43]. Editing
variability-based rules in a user-friendly way is supported by a dedicated extension of Henshin [42].
Example. When taking a closer look at rules left and right from Figure 1, we observe that these rules share
a similar structure with an exception on the edges that are annotated with ‘left’ and ‘right’. Therefore, we
can merge these similar-structured rules and introduce a variability-based rule takeFork = (t, F , pc) to
represent the designation of forks to a philosopher. Transformation rule t consists of all the rule elements
from rule left and right, such that it is “maximal” in the sense that it contains all rule elements. We can
then annotate the diverging elements from the other rules with presence conditions over the set of features
F = { fle f t}. Thereby, we annotate edges left and right with presence conditions pc(le f t) = fle f t and
pc(right) = ¬ fle f t , respectively as shown in Figure 2. To be able to produce the original rules, both
presence conditions may not evaluate to false or true at the same time—which is the case here, because
they are mutual exclusive. For more complicated examples, one would need a configuration constraint
to avoid illegal configurations (a.k.a. feature selections). Nonetheless, the concept of configuration
constraints is out of scope of this paper.

Gryphon

The verification technique Gryphon [19] provides a model checking approach for model-driven software
systems, whose static structure is defined by models built with the Eclipse Modeling Framework and
whose behaviour is defined by graph transformation rules built with the Henshin API [2, 39]. From this
static structure and behaviour models, Gryphon constructs a relational transition system (an encoding
of a transition system using first-order logic formulas) which then can be checked by hardware model
checkers to verify both safety and reachability properties. Gryphon does not support for the specifica-
tion of custom LTL/CTL properties, but considers only one CTL reachability property in the form of
∃♦φ , were φ is a graph state to be reached. By duality, we may negate this formula and check for the
unreachability or safety of φ , which can be expressed by ∀�¬φ .

Gryphon uses a symbolic encoding to encode an input graph, along with graph transformation rules,
into relational formulas (i.e., first-order logic) that describe the model transformations. In essence, the
encoding consists of two steps.
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Figure 3: Scheme of a relational formula produced from a graph transformation rule (based on [19])

First, relational variables are generated. This entails assumes that a type graph GT = (VT , ET ) is
given with nodes VT representing node types and edges ET representing edge types. The creation of
these relational variables is done by using the function relgen : VT ∪ ET → Rel which generates for
each node type a unary relational variable, and for each edge type a binary relational variable. The
unary relational variables are included as atoms in a fixed universe, which consists of a sequence of
uninterpreted atoms A. This universe is initially derived from the initial model, such that for every
object in the initial model, there exists a corresponding atom in the universe. The Gryphon technique
considers a bounded, first-order logic, meaning that each relational variable is assigned an upper bound,
and optionally a lower bound. Bounds are specified over the set of atoms in the universe [19]. In order to
assign upper and lower bounds to unary relational variables, we use the function t : Rel→P(A); upper
bounds of binary relational variables arise from the product of edge source’s and target’s upper bounds.

Then, from these relational variables, graph transformation rules are translated into first-order, rela-
tional formulas. These relational formulas are generated by deriving a formula1

Ft := Pre(L,Nac,R) =⇒ Post(L,R)

for each graph transformation rule t : (L← I→ R, Nac). The function Pre : G×G×G×G→ F takes a
quadruple of graphs and produces a conjunction of relational formulas that mimic the match conditions
of the transformation’s left-hand side and NACs. Moreover, Pre also takes injectivity constraints into
account. The function Post : G×G→ F takes a pair of graphs and produces a conjunction of relational
formulas that mimic how the rule application changes the assumed host graph via deletion and addition.
The resulting formulas can be modification or non-modification constraints, in the sense that specify
what needs to be changed in the host graph or what needs to remain unchanged. The formula Ft can then
be expressed by the scheme shown in Figure 3, which is based on an example with the relational variables
{A, B, C, D, E}. A more comprehensive introduction of the relational encoding is found in [19].

Internally, Gryphon constructs the first-order relational formula from Figure 3 by using the KOD-
KOD API [30], which is then used to translate it to a propositional formula (exploiting the assumption
that the universe is bounded, which makes this translation possible). After that, this propositional for-
mula is rewritten into an and-inverter graph (AIG)—a boolean circuit consisting of only ’and’ and ’not’
gates—and stored in the AIGER format (see Figure 4, [19]). This step is aimed to foster interoperability
as several model checkers can read this format. For the scope of this research, we consider the Incremen-
tal Inductive model checker (IIMC, [24]). Properties are specified at the graph level, as Henshin “check
rules” (non-modifying rules), and translated to the same format.

1This formula originates from Gryphon’s encoding [19], which, in addition, considers positive application conditions–out
of the scope of this research.
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Figure 4: Gryphon’s workflow architecture (from [19]). Grayed components represent external tools

3 Motivating Example

In this section, we will give a motivating example to illustrate how model checking of graph transfor-
mations with variability can be improved by explicitly using variability-related information. For this
example, we consider the Dining Philosopher’s problem with variability as presented in Section 2.

For model checking, we consider a very simple reachability property in which we want to check if
it is possible whether a philosopher can be in the state eating, expressed as the following CTL prop-
erty: ∃♦eating. When considering the variability-based rule takeFork from Figure 2 in which we have
specified presence conditions pc(le f t) = fle f t and pc(right) = ¬ fle f t , we observe that this can be easily
done by applying the rule variants for picking up the left and the right fork. This can be achieved by
applying rule takeFork twice; once in which fle f t is set to true, and once by applying takeFork in which
fle f t is set to false. This evaluates the corresponding presence conditions to true, making it possible for a
philosopher to take the corresponding fork(s). Consequently, given this information, the model checker
is able to conclude that it is now possible for a philosopher to eat as both forks can be assigned to it,
which means that rule eating can be applied, satisfying the reachability property. However, when taking
a closer look at the rule takeFork, we observe that this rule tries to match a single fork as a left and a right
fork to a philosopher. Therefore, we consider presence conditions to preserve the semantics relative to
having two separate rules (i.e., one for picking a left fork and one for a right fork). These considerations
would lead to a variability-aware model checking algorithm that explicitly addresses the rule variants
expressed by a variability-based rule as part of its internal workings.

Without dedicated support for variability-based rules as part of the model checking algorithm, one
could still supporting takeFork, by enumerating all possible configurations for the features F , and cre-
ating a rule for each of them, and feeding the rules as input to a standard model checker. In general, this
leads to an exponential increase in the number of rules, depending on the number of features and presence
conditions that are annotated inside the rules. Feeding more rules with lots of redundant information into
the model checker is likely to make the model checking procedure less efficient.

Therefore, by instead using the information contained in the variability-based rules explicitly during
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the model checking procedure, we expect to obtain efficient support for variability in graph transforma-
tion rules, as we can keep the number of rules minimal and avoid expressing information redundantly.

4 Variability Encoding

Gryphon’s encoding encompasses the use of relational formulas to mimic the behaviour of graph trans-
formations. This section describes an extension of this encoding to support graph transformation rules
with variability.

Recall from Section 2 that a variability-based graph transformation rule consists of a “maximal
rule” t, a presence condition function pc, and a set of features F that can be used to annotate graph
elements with presence conditions in the form of a boolean formula over the set of features F . The
intention of annotations on a graph transformation rule with presence conditions is to specify an addi-
tional constraint on the rule’s matching behaviour. Thereby, the evaluation of a rule’s set of presence
conditions, determines which rule variant is applied.

To specify this variability-based matching behaviour within Gryphon’s encoding, we first introduce
a relational variable for each feature. Similarly to the function relgen as described in Section 2, we intro-
duce the function frelgen : F → Rel, which maps features to unary relational variables. These relational
variables are then also included in the set of atoms A. This step is required for constructing relational
formulas, in which we can refer to the atoms in the universe that correspond to the features as relational
variables.

Recall from Section 2 that relational variables must be bounded. Since feature variables are used to
construct presence conditions in the form of propositional formulas, they are upper bounded by boolean
values (i.e., true and false). As we are now able to generate and bound relational feature variables from
graph annotations, we consider the function pcrelgen : Bool(F )→Bool(Rel) that maps a boolean formula
of features to a relational formula, representing a presence condition.

Gryphon’s encoding as discussed in Section 2, considers the formula Ft , following the formula gener-
ation scheme as exemplified in Figure 3. This formula uses the function Pre to create a relational formula
that mimics the matching conditions of the left-hand side of a graph transformation rule t. The function
Pre consists of an explicit formula match that contains the matching constraint of a transformation rule.
Since we are interested in embedding the presence conditions into the matching constraints, we imply
that we want our presence condition to be a dependent variable of this matching. More concretely, we
want to make the matching constraints of graph elements dependent on these presence conditions such
that: whenever the presence conditions can be met, then the actual matching can also be done. This can
be easily specified as an implication between the presence condition and the matching constraints of the
corresponding graph element. For the scope of this research, we only consider edges to be annotated
with presence conditions. Therefore, we translate every edge e with src(e) = c and trg(e) = d to the
following matching constraint: (c→ d)⊆Ce, where Ce is a binary relational variable that represents the
edge. However, whenever an edge annotated with a presence condition, we want to embed this informa-
tion in this edge. Therefore, we add our presence condition pc to the matching constraint of this edge
as follows: pc→ ((c→ d)⊆Ce). By doing so, the matching constraint is dependent on the presence
condition; if the presence condition is met, then this reference can be matched.

We argue for the soundness of our encoding informally, leaving a rigorous soundness proof to fu-
ture work: In [41], we introduced a notion of variability-based rule applications, which supports the
application of a variability-based rule to a graph. We showed the soundness of variability-based rule ap-
plication, i.e., its equivalence to applying each of the rule variants expressed by the variability-based rule
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to the graph, using traditional rule applications. We argue that Gryphon’s standard encoding captures
the notion of traditional rule application, whereas our modified encoding captures variability-based rule
application. More specifically, including presence conditions of edges into the encoding as we do allows
variability-based matches to be identified. Hence, we can benefit from our earlier soundness proof.

Example. Consider the dining philosopher problem with variability-based rules, as discussed in the mo-
tivating example in Section 3. In this example, we consider F = { fle f t} as the set of features that
are present in rule takeFork. These features are also added as uninterpreted atoms in the universe.
From this, we can construct the following relational feature variable Fle f t = frelgen( fle f t) and bind it by
t(Fle f t) = {true, f alse}. In this case, rule takeFork is annotated with fle f t on edges left and right. There-
fore, we have presence conditions pcrelgen(pc(le f t)) = pcrelgen( fle f t) = Fle f t and pcrelgen(pc(right)) =
pcrelgen(¬ fle f t) = ¬Fle f t for edge left and right, respectively. The references for edge le f t and right are
translated as the following matching constraints:

Fle f t →
(
(p→ f )⊆ Phille f t

)
, src(le f t) = p ∈ Phil, trg(le f t) = f ∈ Fork

¬Fle f t →
(
(p→ f )⊆ Philright

)
, src(right) = p ∈ Phil, trg(right) = f ∈ Fork

Note that Phil corresponds to the class ‘Philosopher’, and Fork to the class ‘Fork’ in the transformation
rule takeFork, where p is a philosopher object and f is a fork object in the matching host graph.

5 Evaluation

This section concerns an evaluation in the form of a runtime comparison between the model check-
ing procedure with variability encoding and the standard Gryphon approach without variability-based
graph transformation rules. For this evaluation, we again consider the dining philosopher’s problem as
described in Section 2. Thereby, we consider the system of transformation rules from Figure 1, con-
sisting of rules: left, right eating, hungry, release. For fair comparison, we compare this system of
transformation rules with the same system, but instead of using the rules left and right, we consider the
variability-based rule takeFork from Figure 2. Moreover, we consider one single reachability property
that checks whether it is possible for a philosopher to be in an eating state (i.e., ∃♦eating). We reuse
the provided specification of this property from the original Gryphon implementation of the case, using
a non-changing rule to specify the graph pattern part of the constraint.

For this runtime comparison, we are interested in the following two metrics: (1) the time of the actual
model checking to conclude the property and (2) the total execution time of the tool (i.e., including rule
translation, etc.). We can then gain insight into how much time was spent on solving and how much time
was spent on translating the models. During this comparison, we consider five different input graphs,
consisting of 10, 20, 30, 40, and 50 philosophers. For accuracy, we have executed the model checking
tool several times over each input model and for each model type; 30 times with variability-based graph
transformation rules (VAR), and 30 times without variability-based rules (STD).

The runtime comparison between both model checking approaches is depicted in Figures 5, 6, and
7, covering total runtime, solving time, and translation time, respectively. From these figures, we gener-
ally observe that model checking with support for variability outperforms model checking without that
support on larger input models in terms of solving time, but not on small input models. For translation
time, we observe that a variability-based rules increases performance for every input model. Moreover,
the main contribution to total runtime comes from solving, whereas rule translation affects total runtime
performances non-significantly.
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Figure 5: Total runtime for standard (STD) and variability-aware (VAR) model checking.

Figure 6: Solving time for standard (STD) and variability-aware (VAR) model checking.
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Figure 7: Translation time for standard (STD) and variability-aware (VAR) model checking.

When taking a closer look at the metrics of our runtime comparison from Figures 5, 6, and 7, we
consider the mean µ and standard deviation σ to give insightful information regarding our obtained
evaluation result (see Table 1). Note that lines that are written in bold represent the metrics that had the
best overall performance for a given model type (i.e., STD or VAR) and the corresponding input model.
Based on the mean average total runtime, we observe a slowdown of 11% on VAR relative to STD for an
input model of 10 philosophers. This slowdown increases to 23% for an input model that considers 20
philosophers. At 30 philosophers, we start to observe a turning point as we see a speedup of 11%. This
speedup increases substantially for an input model that considers 40 philosophers towards 39% and, for
an input model with 50 philosophers, to 45%.

Regarding our research question RQ, we can conclude that variability-aware model checking can
significantly improve performance, up to a speedup of 45%, even for a seemingly simple case with only
two similar rules that were represented as one variability-based rule. These savings can be explained from
the specifics of the case that, however, might be transfer to other similar cases as well: The variability is
included in the most complicated (because NAC-including) pair of rules (i.e., by merging rules left and
right into takeFork), which also leads to a particular complicated encoding of these rules as part of the
overall encoding. By representing these two rules using one variability-based rule, we get a shorter and
less complex overall encoding.

While a formal performance argumentation based on the encoding’s complexity would need to ad-
dress the internal workings of the underlying hardware model checker, which is outside our scope, we
empirically observe that the less complex encoding leads to performance improvements for larger in-
stances. Most of the observed savings are made in the solving time, which, especially for larger instances,
is the computational bottleneck of the overall process. We expect these observed savings to increase even
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Total Runtime (ms) Solving Time (ms) Translation time (ms)
Input Model Model Type µ σ µ σ µ σ

10 Philosophers
STD 795 25 371 23 385 10
VAR 879 43 477 43 376 8

20 Philosophers
STD 5534 44 4901 35 539 23
VAR 6803 50 6691 54 489 15

30 Philosophers
STD 28385 2423 27396 2426 686 25
VAR 25662 459 24368 451 654 34

40 Philosophers
STD 91031 2653 89880 2646 939 35
VAR 65291 1472 59473 1472 812 48

50 Philosophers
STD 234842 11868 232038 11830 1377 63
VAR 162486 18771 142951 18774 1213 80

Table 1: Performance evaluation results: runtime comparison between STD and VAR.

more for cases with a greater amount of variability.

6 Related Work

Studies related to ours are on model checking for software product lines [46], in particular product-based
[29, 28, 15, 1] and family-based analysis [22, 12, 6]; and model checking [25, 37, 36, 35] and analysis
[21, 26, 34] of graph transformations.
Product-Based Model Checking. In product-based model checking, product-specific models of a prod-
uct line are generated as separate entities and individually verified, each using a standard verification
technique which may be optimized or not. In unoptimized approaches, product variants are verified each
time they are derived [29]. To improve scalability and reduce redundant computations, model check-
ing techniques can be optimized for incremental verification [46] with richer notions of features, e.g.
conservative features that do not remove behaviour [15]; or aspects, e.g., spectative, regulative, and in-
vasive [28]. Sampling-based model checking aims at reducing the verification problem by selecting a
subset of valid products [47]. They are likely to find defects quickly, but may miss defects due to its
incompleteness [1]. Instead, our technique for model checking graph transformations is family-based.
Family-Based Model Checking. The main problem with product-based analyses are redundant compu-
tations over shared assets. Then, to achieve a more efficient verification, family-based model checking
incorporates domain artifacts, such as feature models, to analyze a family model with respect to the
variability model and one or more properties. For a given property, a family-based model checker ana-
lyzes whether the property is fulfilled by all products. If not, the model checker provides a propositional
formula specifying those products that violate the property [22]. As standard model checking, their
family-based variants can operate directly on source code or on an abstraction of a system [6], such as
featured transition systems [12]. Our work differs from the aforementioned literature on family-based
analysis by operating on graph transformations as our abstraction.
Model Checking Graph Transformations. The basics of verifying graph transformation systems by
model checking have been studied thoroughly by Heckel in [25]. More recently, approaches for model
checking graph transformation systems have been also extended to more complex scenarios, such as com-
positionality, and probabilistic, timed behaviour [33, 34]. Typically, graphs can be interpreted as states
and rule applications as transitions in a transition system [36]. From a graph transformation perspective,
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there are two main approaches: CheckVML [37] and Groove [35]. The main idea of CheckVML [37] is
to exploit off-the-shelf model checker tools, like SPIN [5], by translating a graph transformation system
and property graphs into their Promela and temporal logic equivalents to carry out the formal analysis. In
contrast, in the GROOVE approach [35], the core concepts of graphs and graph transformations are used
all the way through model checking by explicitly representing and storing states as graphs, and transi-
tions as applications of transformation rules. Also, since properties are specified in a graph-based logic,
the theory and tool support of standard model checkers [3] may not be applied immediately and graph-
specific model checking algorithms should be developed. We contribute the first approach to address
variability in the model checking of graph transformations.
Analyzing Graph Transformations. In addition to model checking, there are various other techniques
to analyze graph transformation systems. For an overview in this topic, we refer the interested reader
to [26]. According to Heckel and Taentzer [26], techniques to analyze graph transformation systems
may address conflict and dependency analysis – to determine the possibility of conflicts or dependen-
cies between rules, termination analysis – to establish the absence of infinite transformation sequences,
constraint verification and enforcement – to derive and check weakest preconditions, and graph parsing
– to construct a derivation for a graph based on grammar rules. One of the severe issues in analyzing
graph transformations is that graphs are typically specified monolithically and, for large models, it can
quickly undermine the advantage of visualisation, and lead to state space explosion [21]. To address this
issue, the analysis of graph transformation systems can also be enriched with notions of compositionality
[21, 34]. Our work addresses this problem by matching and merging similar-structured transformation
rules and annotating their divergences with presence conditions. Within the scope of infinite-state or
potentially-large systems, description logic [8], symbolic execution [38], and over/under-approximation
[4, 20] contribute to the design of push-button technologies for verifying graph transformation systems
in a timely manner. Our technique is suitable for cases where the explicit representation of states is
practical, in which our preliminary evaluation shows reduced computational effort. It can be seen as a
complement to verification techniques suitable for infinite-state spaces [27].

7 Conclusion

In this paper, we have presented a variability encoding as an extension of the lightweight symbolic
model checking technique Gryphon. We have introduced a minimal model checking approach that can
use variability information when it is explicitly encoded in graph transformations rules, introducing an
initial approach to model checking of variability-based graph transformations. This variability encoding
tries to mimic the matching behaviour of multiple rule variants. Moreover, we have given a motivating
example that shows how including features as part of the model-checking procedure can result to increase
performance relative to enumerating all rule variants of a given transformation rule.

Considering our research question, we have empirically evaluated the resulting model checking ap-
proach for variability-based graph transformations. This evaluation was performed by a runtime compar-
ison with a standard model checking approach without variability-based rules (see Table 1). From this
evaluation, we observe moderate improvements in terms of performance on solving time on larger input
models. Therefore, we may conclude that a variability-based execution mode shows potential in model
checking of graph transformations. We expect that this improvement will become more significant when
including more variability-based graph transformation rules with more features and presence conditions
for a given system of transformation rules.
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8 Limitations and Future Work

Our presented model checking approach is far from complete and is to be considered a proof of concept.
Important future directions for extending our present, Gryphon-based, approach include:

• A rigorous argumentation for the soundness and performance of our approach. For soundness, this
entails proving that our variability-based execution mode leads to the same results as the classical
one—a conjecture currently supported by our informal argumentation and automated testing in
our evaluation scenario. A performance proof addressing the internal workings of the underlying
hardware model checker could be used to explain our empirically observed performance benefits.

• Increasing the expressiveness of supported variability-based transformations, to support configu-
ration constraints as well as arbitrary propositional formulas as presence conditions. While the
current implementation does not support constraints and only supports simple presence conditions
consisting of a singular feature or its negation, we do not foresee any particular limitations towards
improving the offered support as described.

• A more exhaustive empirical performance evaluation. The present evaluation considered a small
graph transformation system, including a limited number of features and presence conditions.
While we have shown that including variability in transformation rules can bring performance
improvements even in this small setting, we foresee that the improvement can be more significant
when considering more rule variability and larger input models.

The abovementioned directions could be addressed by further extensions of and experimentation with
the Gryphon model checker. However, any future extensions of Gryphon are likely to retain the same
limitations regarding the supported kinds of graph transformations that we currently have. In particular,
they would be focused on graph transformation rules that create and delete edges.

To lift this limitation, a promising direction is to extend other graph-based model checking techniques
that may benefit from introducing variability as well. As a starting point, one might want to introduce
a variability-based execution mode in the GROOVE [35] model verification technique. As described in
Section 6, GROOVE explicitly represents states as graphs and transitions as applications of transforma-
tion rules. Therefore, a promising idea is to include a variability-based rule application mode to make
GROOVE variability-aware. To this end, one could use some of the concepts of dealing with variability
as presented in this paper.

Finally, while the current work is focused on addressing variability in rules, graphs could be affected
by variability as well. In particular, this is the case when modeling and analyzing a software product
line [46] using graphs, which during model checking would lead to a further dimension of combinatorial
explosion. Graph transformation of software product lines has been addressed in previous work [45, 40,
10], motivating future work on model checking as a means of validating such transformations.
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[39] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo Kehrer, Manuel Ohrndorf &
Matthias Tichy (2017): Henshin: A usability-focused framework for EMF model transformation develop-
ment. In: International Conference on Graph Transformation, Springer, pp. 196–208.
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c© R. Söldner and D. Plump

This work is licensed under the
Creative Commons Attribution License.

Towards Mechanised Proofs in
Double-Pushout Graph Transformation
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We formalise the basics of the double-pushout approach to graph transformation in the proof assistant
Isabelle/HOL and provide associated machine-checked proofs. Specifically, we formalise graphs,
graph morphisms and rules, and a definition of direct derivations based on deletion and gluing. We
then formalise graph pushouts and prove with Isabelle’s help that both deletions and gluings are
pushouts. We also prove that pushouts are unique up to isomorphism. The formalisation comprises
around 4000 lines of source text. Our motivation is to pave the way for rigorous, machine-checked
proofs in the theory of the double-pushout approach, and to lay the foundations for verifying graph
transformation systems and rule-based graph programs by interactive theorem proving.

1 Introduction

Software faults may lead to unexpected system’s behaviour with a significant loss of goods or even
personal harm. Documented examples of system failures range from medical devices [15] over space
launch vehicles [7] to hardware design [13]. To prevent software faults, formal methods such as static
analysis or program verification continue to attract a considerable amount of research.

Computing by rule-based graph transformation provides an intuitive and visual approach to specifi-
cation and programming. Here, the main formal concepts for ensuring correctness are model checking
[22, 25, 2, 21, 10] and proof-based verification [12, 14, 20, 24, 6, 23, 4, 27]. One of the oldest and
most established approaches to graph transformation is the double-pushout (DPO) approach, where rule
applications are defined by a pair of pushouts in the category of graphs [9]. Formal proofs in the DPO
approach come in two flavours, they either establish results in the DPO theory (such as the commutativity
of independent rule applications) or they show the correctness of concrete graph transformation systems
and graph programs.

While main stream formal methods increasingly employ proof assistants such as Coq [3] or Isabelle
[16] to obtain rigorous, machine-checked proofs, to the best of our knowledge such tools have not yet
been used in the area of DPO graph transformation. In this paper, we report on first steps towards the
formalisation of the DPO theory in the Isabelle proof assistant. Specifically, we focus on linear rules with
injective matching and show how to formalise (labelled, directed) graphs, morphisms, and rules. (Note
that injective matching is more expressive than unrestricted matching because each rule can be replaced
by the set of its quotient rules, and selected quotients can be omitted [11]). We give an operational
definition of direct derivations based on deletion and gluing. We then formalise graph pushouts and
prove with Isabelle’s help that both deletion and gluing are pushouts. We also prove that pushouts are
unique up to isomorphism.

We stress that we do not intend to formalise an abstract theoretical framework such as adhesive
categories [9], nor do we aim at covering all kinds of graphs that one can find in the DPO literature such
as infinite graphs, hypergraphs, typed graphs, etc. Rather, we are interested in concrete constructions on

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


R. Söldner and D. Plump 71

graphs such as deletion and gluing, and how they relate to the double-pushout formulation. Our long-
term goal is to provide interactive and automatic proof support for formal reasoning on programs in a
graph transformation language such as GP 2 [5]. The underlying formalisation in Isabelle will inevitably
have to deal with the concrete graphs, labels, rules, etc. that are the ingredients of such programs.

To summarize, this paper makes the following contributions:

• We formalise in Isabelle the basics of the DPO approach with injective matching.

• We prove that the operational construction of direct derivations by deletion and gluing gives rise
to a double-pushout diagram.

• We prove that graph pushouts are unique up to isomorphism.

We believe that this is the first formalisation of DPO-based graph transformation in a theorem prover.
The formalisations and proofs were developed using the Isabelle 2021 proof assistant. The entire for-
malisation comprises around 4000 lines of source text and can be accessed from GitHub1.

Currently, we are revising our design in order to increase readability and facilitate certain automated
proofs (see the comments in the conclusion). The rest of the paper is structured as follows: Section
2 briefly reviews the theoretical background required in this research. Section 3 will provide selected
examples of our formalisation using the proof assistant Isabelle. Finally, in Section 4, the paper is
summarised, some design decisions are discussed, and future work is stated.

2 Graphs, Rules and Derivations

This section reviews basic terminology and results regarding graphs, rules, and derivations in the double-
pushout approach with injective matching; see for example [9, 11]. In Section 3, we formalise these
definitions and results in Isabelle.

Definition 1 (Label alphabet). A label alphabet L = (LV ,LE) consists of a set LV of node labels and
a set LE of edge labels.

We define directed and labelled graphs and allow parallel edges and loops. We do not consider
variables as labels.

Definition 2 (Graph). A graph G = (V,E,s, t, l,m) over the alphabet L is a system where V is the finite
set of nodes, E is the finite set of edges, s, t : E → V functions assigning the source and target to each
edge, l : V →LV and m : E→LE are functions assigning a label to each node and edge.

Next we review graph morphisms which are structure-preserving mappings between graphs. We
describe our Isabelle formalisation in Subsection 3.1.

Definition 3 (Graph morphism). A graph morphism f : G→ H is a pair of mappings f = ( fV : VG →
VH , fE : EG→ EH), such that for all e ∈ EG and v ∈VG:

1. fV (sG(e)) = sH( fE(e)) (sources are preserved)

2. fV (tG(e)) = tH( fE(e)) (targets are preserved)

3. lG(v) = lH( fV (v)) (node labels are preserved)

4. mG(e) = mH( fE(e)) (edge labels are preserved)

We also define some special forms of morphisms.

1https://github.com/UoYCS-plasma/DPO-Formalisation
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Definition 4 (Special morphisms and isomorphic graphs). A morphism f is injective (surjective, bijec-
tive) if fV and fE are injective (surjective, bijective). Morphism f is an inclusion if for all v ∈ VG and
e ∈ VE , fV (v) = v and fE(e) = e. A bijective morphism is an isomorphism. In this case, G and H are
isomorphic, which is denoted by G∼= H.

The composition of two morphisms yields a well-defined morphism, which we prove in Subsec-
tion 3.1.

Definition 5 (Morphism composition). Let f : F → G and g : G→ H be graph morphisms. The mor-
phism composition g◦ f : F → H is defined by g◦ f = (gV ◦ fV ,gE ◦ fE).

In DPO-based graph transformation, rules are the atomic units of computation. We describe the
formalisation of rules in Subsection 3.5.

Definition 6 (Rule). A rule (L← K→ R) consists of graphs L,K and R over L together with inclusions
K→ L and K→ R.

The addition of graph components along a common subgraph is called gluing. We present our Is-
abelle formalisation in Subsection 3.3. The gluing construction below uses the disjoint union of sets A
and B defined by A+B = (A×{1})∪ (B×{2}). It comes with injective functions iA : A→ A+B and
iB : B→ A+B such that iA(A)∪ iB(B) = A+B and iA∩ iB = /0. To keep the rest of this section readable,
we tacitly assume that the injections iA and iB are inclusions. Only in Subsection 3 we will be dealing ex-
plicitly with the injections. We prove the correspondence between the gluing construction and pushouts
in Subsection 3.3.

Lemma 1 (Gluing [8]). Let (L← K→ R) be a rule and d : K→ D an injective graph morphism. Then
the following defines a graph H (see Fig. 1a), the gluing of D and R according to d:

1. VH =VD +(VR−VK)

2. EH = ED +(ER−EK)

3. sH(e) =


sG(e) if e ∈ ED

dV (sR(e)) if e ∈ ER−EK and sR(e) ∈VK

sR(e) otherwise

4. tH analogous to sH

5. lH =

{
lD(v) if v ∈VD

lR(v) otherwise

6. mH analogous to lH
Moreover, the morphism D→H is an inclusion and the injective morphism h is defined for all items x in
R by h(x) = if x ∈ R−K then x else d(x).

The dangling condition ensures that deletion results in a well-defined graph.

Definition 7 (Dangling condition). Let (L← K→ R) be a rule. An injective graph morphism g : L→ G
satisfies the dangling condition if no edge in EG−gE(EL) is incident to a node in gV (VL−VK).

The following deletion of graph components is formalised in Subsection 3.4.

Lemma 2 (Deletion [8]). Let (L ← K → R) be a rule and g : L → G an injective graph morphism
satisfying the dangling condition (see Fig. 1b). Then:

1. VD =VG−gV (VL−VK) and ED = EG−gE(EL−EK) induce the inclusion D→ G, and

2. there is an injective graph morphism d : K→ D, defined by d(x) = g(x) for all items x in K.
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Figure 3: A Direct Derivation

Definition 8 (Pushout). Given graph morphisms b : A→ B and c : A→C, a graph D together with graph
morphisms f : B→D and g : C→D is a pushout of A→ B and A→C if the following holds (see Fig. 2):

1. Commutativity: f ◦b = g◦ c

2. Universal property: For all graph morphisms p : B→H and t : C→H such that p◦b = t ◦c, there
is a unique morphism u : D→ H such that u◦ f = p and u◦g = t.

The formalisation of pushouts and the proof that pushouts are unique up to isomorphism is presented
in Subsection 3.2.

Theorem 1 (Uniqueness of pushouts [1]). Let A→ B and A→C together with D induce a pushout as
depicted in Fig. 2. A graph H together with morphisms B→H and C→H is a pushout of b and c if and
only if there is an isomorphism u : D→ H such that u◦ f = p and u◦g = t.

Theorem 2 (Gluings are pushouts [8]). Let K → R be an inclusion, d : K → D be an injective graph
morphism, and H be the gluing of D and R according to d, as defined in Lemma 1. Then, the square
in Fig. 1a is a pushout diagram where D→ H is an inclusion and h is defined by h(x) = if x ∈ R−
K then x else d(x). We call H the pushout object.

The deletion construction of Lemma 2 and the following theorem are formalised and proved in Sub-
section 3.4.

Theorem 3 (Deletions are pushouts [8]). Let K → L be an inclusion, g : L→ G be an injective graph
morphism satisfying the dangling condition, and D be subgraph of G as defined in Lemma. 2. Then, the
square in Fig. 1b is a pushout diagram where g is an inclusion and d(x) = g(x) for all items x in K. We
call D the pushout complement.

The following definition of rule application is formalised in Subsection 3.5.
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Definition 9 (Direct derivation). Let r = (L← K → R) be a rule and g : L→ G be an injective graph
morphism satisfying the dangling condition. Then G directly derives (see Fig. 3) M by r and g, denoted
by G⇒r,g M, if H ∼= M, where H is constructed from G by:

1. (Deletion) D is the subgraph G−g(L−K).

2. d : K→ D is the restriction of g to K and D.

3. (Gluing) H is the gluing H = D+(R−K).

Note that by Theorem 2 and Theorem 3, square (1) and (2) in Fig. 3 are pushouts. The next sec-
tion provides a general introduction to the Isabelle proof assistant and highlights selected parts of our
formalisation.

3 DPO Formalisation in Isabelle/HOL

Isabelle is a generic, interactive theorem prover based on the so-called LCF approach. It is based on a
small (meta-logical) proof kernel, which is responsible for checking all proofs. This concept provides
high confidence in the prover’s soundness. Isabelle/HOL refers to the higher-order logic instantiation
which is considered to be the most established calculus within the Isabelle distribution [19].

Type variables are denoted by a leading apostrophe. For example, a term f of type ’a is denoted
by f :: ’a. The HOL library provides a large collection of definitions, including the option data type
’a option = Some ’a | None which is used to denote the absence of a value (None) or the presence
(Some). Partial functions (called maps) are modelled using the option type ’a ⇒ ’b option with the
infix notation ’a ⇀ ’b.

Our formalisation is based on Isabelle’s locales, a mechanism for writing parametric specifications.
Furthermore, we use intelligible semi-automated reasoning (Isar) which is Isabelle‘s language of writing
structured proofs [26]. In contrast to apply-scripts, which execute deduction rules in a linear manner,
Isar follows a structured approach resulting in increased readability and maintainability [17].

A general introduction to Isabelle/HOL can be found in [16]. The main components of our formali-
sation and their interdependencies are depicted in Fig.4. The simple arrow (→) can be read as ”depends
on”, i.e., the definition of morphisms depends on the definition of graphs allowing the inheritance of
properties. The blue arrow =⇒ highlights main theorems proven in this study, viz. that the gluing and
deletion constructions correspond to pushouts and that pushout objects are unique up to isomorphism.

3.1 Graphs and Morphisms

Our definition of graphs (Def. 2) is different from Strecker’s [23] where a graph is a set of nodes together
with a binary relation of nodes. A consequence of Strecker’s definition is the absence of parallel edges
and the absence of edge labels. Moreover, the graphs in [23] do not have edge labels.

We represent the node and edge sets of graphs by two arbitrary but fixed types ’v and ’e. Similarly,
’LV and ’LE are types representing the universes of possible node and edge labels.

Since functions in Isabelle/HOL are defined over complete types (e.g., nat), we usually have to
restrict our reasoning to a subset of the values of a type. There are two main approaches for this, the use
of partial functions (maps) or the explicit specification of the defined reasoning subset. In this paper, we
use partial functions but discuss the alternative to rely on total functions in Section 4.
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Graph

Morphism

GluingDeletion Pushout

Uniqueness

Direct Derivation

Figure 4: Overview of component dependencies (→) and major theorems (⇒)

Notation In the following, a partial function with a trailing apostrophe indicates the equivalent total
function over the partial function’s domain of definition. For example, the total function corresponding
to the (partial) source mapping s :: "’e ⇀ ’v" is denoted by s’.

The locale graph declares all parameters using the fixes keyword, the corresponding types are given
explicitly. With the defines keyword, we declare our total functions to be equivalent (with respect to
extensional equality) to the transformer function totalize applied to the partial functions. The totalize
function is defined by using the abbreviation keyword, which introduces a syntactic constant that is
associated with the term behind the ≡ symbol.
abbreviation totalize :: "(’a ⇀ ’b) ⇒ ’a ⇒ ’b" where
"totalize f a ≡ the (f a)"

The simp attribute, indicated by the brackets, tells the simplifier to consider this rule automatically.
Premises for the locale context are specified using the assumes keyword. The premises for this formali-
sation are, the set of nodes and edges are finite, the source and target domains are the set of edges (e.g.,
dom s = E) while the range is a subset of the nodes (e.g., ran s ⊆ V), and the node and edge labelling
function are defined for all nodes (edges) respectively, i.e., dom l = V and dom m = E.
locale graph =
fixes
V :: "’v set" and E :: "’e set" and
s :: "’e ⇀ ’v" and s’:: "’e ⇒ ’v" and
t :: "’e ⇀ ’v" and t’:: "’e ⇒ ’v" and
l :: "’v ⇀ ’LV" and l’:: "’v ⇒ ’LV" and
m :: "’e ⇀ ’LE" and m’:: "’e ⇒ ’LE"

defines
s_def[simp]: "s’ ≡ totalize s" and t_def[simp]: "t’ ≡ totalize t" and
l_def[simp]: "l’ ≡ totalize l" and m_def[simp]: "m’ ≡ totalize m"

assumes
finite_nodes: "finite V" and finite_edges: "finite E" and
integrity_s: "dom s = E ∧ ran s ⊆ V" and
integrity_t: "dom t = E ∧ ran t ⊆ V" and
integrity_l: "dom l = V" and integrity_m: "dom m = E"

The built-in (defined in the standard library of Isabelle/HOL) functions dom and ran are defined for
partial functions only and their definition is as follows.
definition dom :: "(’a ⇀ ’b) ⇒ ’a set" where "dom m = {a. m a 6= None}"
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The domain of a map m is the set of values which applied to m result in some value, i.e., does not
result in None. The range of a map m is the set of elements, m projects to.

definition ran :: "(’a ⇀ ’b) ⇒ ’b set" where
"ran m = {b. ∃ a. m a = Some b}"

In contrast to the formalisation of graphs by Noschinski [18], we do not use an additional data
structure to represent graphs in this paper. (Meanwhile, we have started to revise this design; see the
discussion in the Conclusion.) Moreover, we allow nodes and edges to carry labels. The use of partial
functions allows to express function equality directly, without the need to specify the domain. That is,
we may write f = g without a quantifier over the domain as in ∀x ∈ A. f x = gx.

The definition of morphisms (see Def. 3) follows a similar approach. The locale morphism makes
use of so-called locale instances, which allows the usage of quantifiers to reference locale instances
which are imported in the current context. A morphism carries its domain (G: graph . . .), the codomain
(H: graph . . .), and two mappings between node and edge sets (gV and gE). The for keyword is used
to define instance parameters explicitly, including the optional type attribute. In our case, the types of
the domain (VG :: ’vG set and EG :: ’eG set) and codomain (VH :: ’vH set and EH :: ’eH set)
graph are used to define the node (edge) mappings between both graphs.

locale morphism =
G: graph VG EG sG s’G tG t’G lG l’G mG m’G +
H: graph VH EH sH s’H tH t’H lH l’H mH m’H for
VG::"’vG set" and EG::"’eG set" and sG s’G tG t’G lG l’G mG m’G and
VH::"’vH set" and EH::"’eH set" and sH s’H tH t’H lH l’H mH m’H +
fixes
gV :: "’vG ⇀ ’vH" and g’V :: "’vG ⇒ ’vH" and
gE :: "’eG ⇀ ’eH" and g’E :: "’eG ⇒ ’eH"

defines
gV_def[simp]: "g’V ≡ totalize gV" and
gE_def[simp]: "g’E ≡ totalize gE"

assumes
integrity_v: "dom gV = VG ∧ ran gV ⊆ VH" and
integrity_e: "dom gE = EG ∧ ran gE ⊆ EH" and
source_preserve: "gV ◦m sG = sH ◦m gE" and
target_preserve: "gV ◦m tG = tH ◦m gE" and
node_label_preserve: "lG = lH ◦m gV" and
edge_label_preserve: "mG = mH ◦m gE"

The morphism axioms include that mapping preserves the integrity of sources (3.1), targets (3.2) and
labels (3.3 and 3.4). The built-in composition for maps is defined as follows:

definition map_comp :: "(’b ⇀ ’c) ⇒ (’a ⇀ ’b) ⇒ (’a ⇀ ’c)" where
"f ◦m g = (λk. case g k of None ⇒ None | Some v ⇒ f v)"

The evaluation of f ◦m g will case-split on the result of evaluating g. The None case will terminate the
computation by returning None, while the Some v case will evaluate f v as its result. With this definition,
we can prove that given two graph morphisms g = (gV ,gE) : G→ H and k = (kV ,kE) : H→ K, the pair-
wise composition k ◦g = (kV ◦gV ,kE ◦gE) is a well-defined graph morphism. This lemma is expressed
in Isabelle/HOL as follows:

lemma
assumes
g:"morphism VG EG sG tG lG mG VH EH sH tH lH mH gV gE" and
k:"morphism VH EH sH tH lH mH VL EL sL tL lL mL kV kE"

shows "morphism VG EG sG tG lG mG VL EL sL tL lL mL
(kV ◦m gV) (kE◦m gE)"

proof intro_locales



R. Söldner and D. Plump 77

A proof is initiated by the proof statement followed by an optional proof method. Here, we use the
intro_locales proof method. This method will expand all introduction rules generated by the usage of
locales. Isabelle generates the following output:
proof (state)
goal (3 subgoals):
1. graph VG EG sG tG lG mG
2. graph VL EL sL tL lL mL
3. morphism_axioms VG EG sG tG lG mG VL EL sL tL lL mL

(kV ◦m gV) (kE ◦m gE)

It highlights three subgoals the user has to discharge. The proof obligations (1) and (2) follow directly
from the assumptions g and k, respectively. In Isar, we explicitly state the obligations using the show

keyword. The proof of (1) is as follows:
show "graph VG EG sG tG lG mG"
using g morphism_def by blast

Here, we are telling Isabelle to use the fact g, expressing that g : G→ H is graph morphism, and our
definition of morphisms (the fact morphism_def is automatically generated by Isabelle) using the using

keyword. Ultimately, we propose to Isabelle to discharge the goal by using the supplied facts with the
tableau prover blast (indicated by by blast). This goal is automatically proved by Isabelle using the
supplied facts. The proof of (2) follows analogously. Goal (3) makes use of the automatically generated
morphism_axioms predicate which contains all the assumptions stated in the morphism locale. A direct
proof using a standard proof method, such as blast, fails. This proof obligation requires manual support
from the user and we initiated the proof by the standard proof method (which is the default and can thus
be omitted):
show "morphism_axioms VG EG sG tG lG mG VL EL sL tL lL mL (kV ◦m gV)"
proof

Isabelle generated the upcoming six subgoals to discharge the goal:
proof (state)
goal (6 subgoals):
1. dom (kV ◦m gV) = VG ∧ ran (kV ◦m gV) ⊆ VL
2. dom (kE ◦m gE) = EG ∧ ran (kE ◦m gE) ⊆ EL
3. kV ◦m gV ◦m sG = sL ◦m (kE ◦m gE)
4. kV ◦m gV ◦m tG = tL ◦m (kE ◦m gE)
5. lG = lL ◦m (kV ◦m gV)
6. mG = mL ◦m (kE ◦m gE)

Whereby subgoals (1) and (2) reflect the domain and range restrictions of the composed morphisms,
(3)-(6) correspond to the structure preserving property of source (Def. 3.1), target (Def. 3.2) and labels
(Def. 3.3 and Def. 3.4). The proof of the domain of subgoal (1) and structure preserving under the
composed mapping of (3) is shown below:
show "dom (kV ◦m gV) = VG"
using morphism.dom_gv[OF k] morphism.dom_gv[OF g]
morphism.integrity_v’[OF g]

by fastforce

We prove the lemma by stating the facts manually, indicated by the usage of the using keyword.
The fastforce proof method is able to discharge the obligation. The intuition behind x[OF . . .] is the
application of the theorem x to the argument . . . , similar to function application but for theorems. We
can thus specialise the morphism.dom_gv lemma to the graph g and k. In fact, the Sledgehammer tool is
able to find a proof directly using the verit smt solver. Sledgehammer applies automatic theorem provers
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(ATMs) and satisfiability-modulo-theories (SMT) solvers to the current (sub) goal and reconstructs each
proof. The subgoal (3), the structure preserving under the source function, follows the textbook proof of
[9] whereby in Isabelle we have to justify each proof step in more detail.

show "(kV ◦m gV) ◦m sG = sL ◦m (kE ◦m gE)"
proof -
have "(kV ◦m gV) ◦m sG = (kV ◦m sH) ◦m gE"
by (simp add: map_comp_assoc morphism.source_preserve[OF g])

also have ". . . = sL ◦m (kE ◦m gE)"
by (simp add: map_comp_assoc morphism.source_preserve[OF k])

finally show ?thesis .
qed

The proof requires the associativity of partial function composition, which was not part of Isabelle’s
standard library and thus proved previously by us in a separate lemma. The source_preserve fact is
specialised (using [OF g]) to the morphism g. The remaining subgoals work similar. Isar provides
a variaty of predefined abbreviations such as ?thesis which is bound to the proof goal, ”. . .” which
refer to the right hand side of the previous stated expression, or the short proof method ”.” which is a
synonym for by this. The interested reader will find additional abbreviations and explanations in the
Isar reference.

3.2 Pushouts

This subsection formalises pushouts in Isabelle and proves their uniqueness up to isomorpism (cf. 1). The
pushout characterisation comprises four commuting morphisms (A→ B, A→ C, B→ D, and C→ D)
which satisfy the universal property (cf. Def. 8). The commuting property is expressed using the node
(fV ◦m bV = gV ◦m cV ) and edge (fE ◦m bE = gE ◦m cE) composition of morphisms. Our formalisa-
tion is as follows:

locale pushout_diagram =
b: morphism VA . . . VB . . . bV b’V bE b’E +
c: morphism VA . . . VC . . . cV c’V cE c’E +
f: morphism VB . . . VD . . . fV f’V fE f’E +
g: morphism VC . . . VD . . . gV g’V gE g’E for . . . +
assumes
node_commutativity: "fV ◦m bV = gV ◦m cV" and
edge_commutativity: "fE ◦m bE = gE ◦m cE" and
universal_property:
"J graph (VH :: ’v set) (EH :: ’e set) sH tH lH mH;
morphism VB EB sB tB lB mB VH EH sH tH lH mH pV pE;
morphism VC EC sC tC lC mC VH EH sH tH lH mH tV tE;
pV ◦m bV = tV ◦m cV; pE ◦m bE = tE ◦m cE K
=⇒ ∃! (uV, uE).

morphism VD ED sD tD lD mD VH EH sH tH lH mH uV uE
∧ uV ◦m fV = pV ∧ uE ◦m fE = pE
∧ uV ◦m gV = tV ∧ uE ◦m gE = tE"

In Isabelle, unbound variables are implicitly bound using the (meta) allquantor indicated by
∧

, i.e.
lemma "P x" will be interpreted as lemma "

∧
x. P x". This fact is used to express the universal property

”for all graphs H ...”. Here, our approach of using partial functions also paid off. The built-in unique
existential quantifier is defined as follows:

definition Ex1 :: "(’a ⇒ bool) ⇒ bool"
where "Ex1 P ≡ ∃x. P x ∧ (∀y. P y → y = x)"
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Since we quantify over partial functions, we can reason about equality (i.e. x = y) without be-
ing restricted to existential equality. Within the context of the pushout_diagram locale, we prove the
uniqueness of the pushout object, expressed by the following lemma.
lemma uniqueness_po:
fixes VD′ :: "’v set" and ED′ :: "’e set"
assumes
D’: "graph VD′ ED′ sD′ tD′ lD′ mD′" and
p’: "morphism VB EB sB tB lB mB VD′ ED′ sD′ tD′ lD′ mD′ pV pE" and
d’: "morphism VC EC sC tC lC mC VD′ ED′ sD′ tD′ lD′ mD′ qV qE"

shows "pushout_diagram VA EA sA tA lA mA VB EB sB tB lB mB
VC EC sC tC lC mC VD′ ED′ sD′ tD′ lD′ mD′ bV bE cV cE pV pE qV qE

←→ ∃ (uV uE).
bijective_morphism VD ED sD tD lD mD VD′ ED′ sD′ tD′ lD′ mD′ uV uE

∧ uV ◦m gV = qV ∧ uE ◦m gE = qE ∧ uV ◦m fV = pV ∧ uE ◦m fE = pE"

The proof is around 350 lines of code and follows mostly from the universal property. Subsequently,
the gluing and deletion constructions are given and their pushout correspondence is shown.

3.3 Gluings are Pushouts

The gluing locale is used as an environment with the required preconditions as described in Lemma 1.
In this context, we first define the gluing construction depicted in Fig. 1a. In the special case where k
is an inclusion, the gluing graph D can be constructed using the disjoint union of the nodes and edges,
denoted by +, i.e. V =VD +(VR−VK). In Isabelle/HOL we use the built-in sum type which implements
the disjoint sum of two types. The Inl and Inr definitions can be used to lift arbitrary values into the sum
encoding and correspond to the definition if iA and iB of Section 3.1. The set of nodes can be constructed
as follows:
abbreviation V where "V ≡ Inl ‘ VD ∪ Inr ‘ (VR - VK)"

The infix operator ‘ (backtick) corresponds to the image function of sets, which applies the given
function to all elements of the second argument, e.g. the expression Inl ‘ {1::nat} ∪ Inr ‘ {1::nat}

will evaluate to {Inl 1, Inr 1}. The edge construction E follows analogously. The source (target) func-
tion is defined using the fun keyword, which automatically tries to prove important properties such as
termination and completeness. In case the automation fails, the user has to prove these properties by
hand. In our case, Isabelle was able to discharge all the required goals automatically. The source func-
tion is given by:
fun s where
"s (Inl e’) = map_option Inl (sD e’)"

| "s (Inr e’) = (if e’ ∈ ER - EK ∧ s’R e’ ∈ VK
then map_option Inl ((fV ◦m sR) e’)
else map_option Inr ((sR|‘(ER-EK)) e’))"

The intuition here is to first case-split on the sum encoding to derive the potential edge origin (ED or
ER), strongly following Lemma 1. The target function is defined analogously. The labelling function is
defined using the case_sum keyword which will case-split on the sum-encoded argument (the edge) and
applies the corresponding argument (first or second).
abbreviation l where "l ≡ case_sum lD (lR |‘ (VR-VK))"

The intuition here is, if the edge belongs to D, we can directly use lD, if not the edge might belong
to R−K and therefore we have to restrict lR. The edge labelling function is analogously. With all
components defined, we can prove the components form a graph by interpreting the graph locale and
discharge all proof goals generated by Isabelle.
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interpretation object:
graph V E s "totalize s" t "totalize t" l "totalize l" m "totalize m"

proof unfold_locales

The proof is mechanic and follows case splitting of the sum type. For the pushout construction, we
define the morphisms j : D→ H and h : R→ H (see Fig. 1a). Since h is an inclusion the node mapping
by:
definition jV where "jV ≡ λv. if v ∈ VD then Some (Inl v) else None"

The node mapping returns Some in case v is in VD, otherwise None is returned, the edge definition jE

is analogously. To prove this definition is indeed a valid inclusion, we interpret the inclusion_morphism

locale. Defining hV with the argument v will return Some (Inr v) in case, v is a node to be added, i.e.
if v ∈ VR - VK . Otherwise, the node (if in the graph) must belong to K and using the fact that k is an
inclusion, we can use fV .
definition hV where
"hV ≡ λv. if v ∈ VR - VK then Some (Inr v) else map_option Inl (fV v)"

The map_option functor allows to apply the Inl projection in case fV v evaluates to Some. We follow
by interpretation of the injective_morphism locale, which restricts the morphism to be injective.

Ultimately, we show that this construction corresponds to the pushout object,see Theorem 2, also
by interpretation of the pushout_diagram locale, which automatically generates the upcoming three
subgoals:
proof (state)
goal (3 subgoals):
1. hV ◦m kV = jV ◦m fV
2. hE ◦m kE = jE ◦m fE
3.

∧
VH EH sH tH lH mH pV pE tV tE.
J graph VH EH sH tH lH mH;
morphism VR ER sR tR lR mR VH EH sH tH lH mH pV pE;
morphism VD ED sD tD lD mD VH EH sH tH lH mH tV tE;
pV ◦m kV = tV ◦m fV; pE ◦m kE = tE ◦m fE K

=⇒ ∃!(uV, uE).
morphism V E s t l m VH EH sH tH lH mH uV uE ∧
uV ◦m hV = pV ∧ uE ◦m hE = pE ∧
uV ◦m jV = tV ∧ uE ◦m jE = tE

The first two subgoals (1) and (2) are analogous by case-splitting, here we show the proof of (1):
show "hV ◦m kV = jV ◦m fV" (is "?f = ?g")
proof
show "?f x = ?g x" for x
proof (cases "x ∈ VK")
case True
then show ?thesis
unfolding jV_def hV_def
using i.inclusion_nodes_alt i.v_morph_not_none
m.integrity_v’ m.v_morph_not_none by fastforce

next
case False
then show ?thesis
using i.dom_gv m.dom_gv by auto

qed
qed

The proof method states cases "x ∈ VK" which will introduce two subgoals: (1) x is in VK and (2)
it is not. The proof of (1) follows from the definition of both mappings, the integrity of the injective
morphism, and the inclusion and subgoal (2) follows from the morphisms domain.
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3.4 Deletions are Pushouts

The deletion locale is used as an environment with the required preconditions as stated in Lemma 2. The
dangling condition (cf. Def. 7) is stated as:
"e ∈ EG - f’E ‘ EL =⇒ s’G e /∈ f’V ‘ (VL-VK) ∧ t’G e /∈ f’V ‘ (VL-VK)"

With our introduction of the total equivalent functions (denoted with a trailing apostrophe), we can
directly express the condition without the need to care about the option datatype. The construction of
the graph D removes all nodes and edges from G which belong to the subgraph L without K under the
morphism f . The set of nodes is constructed by:
abbreviation V where "V ≡ VG - f’V ‘ (VL - VK)"

The edge set is defined analogous. The |‘ infix operator (restrict_map) does restrict the partial
function m to the domain A. The source function is the restriction of sG to the edge set E and can be
defined as:
abbreviation s where "s ≡ sG |‘ E"

The target and both labelling functions are defined analogous. We followed by proving this construction
corresponds to a well-founded graph by interpretation the graph locale, as described in Sec. 3.3. Within
this setup, we define two additional graph morphisms to make the diagram, depicted in Fig. 1b, commute.
The injective morphism d : K→ D which is the restriction of the match f is defined by:
definition dV where "dV ≡ fV |‘ VK"

The edge mapping is analogous. The inclusion g : D→ G is defined by:
definition gV where "gV ≡ λv. if v ∈ V then Some v else None"

The edge mapping is analogous. The proofs (injectivity and inclusion) are given by interpreting the
corresponding locale. Ultimately, we prove that the constructed pushout complement together with the
two morphisms form a pushout diagram, see Theorem 3. The proof is by interpretation and the details
are omitted to conserve space. The subsequent section introduces our formalisation of rules and direct
derivations.

3.5 Rules and Derivations

A rule accordingly to Def. 6 can be characterised by the two inclusions K→ L and K→ R. We model
this in Isabelle using the locale rule as follows:
locale rule =
l: inclusion_morphism VK . . . VL . . . +
r: inclusion_morphism VK . . . VR . . .
for . . .

As we have explicitly included the domain and codomain in our definition of morphisms, we inherit
all properties and Isabelle‘s locales mechanism allows this dense definition. A direct derivation (cf.
Def. 9) is built on top of existing constructs by using the locale import capability:
locale direct_derivation =
r: rule VK . . . VL . . . VR . . . +
k: injective_morphism VL . . . VG . . . +
d: deletion VL . . . VK . . . VG . . . +
g: gluing
VK EK sK s’K tK t’K lK l’K mK m’K
VR ER sR s’R tR t’R lR l’R mR m’R
d.V d.E d.s _ d.t _ d.l _ d.m _

for . . .
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This setup is depicted in Fig. 3. We calculate the output graph by sequential execution of the deletion
and gluing construction, if the assumptions (valid rule, injective match, and dangling condition) are met.

4 Conclusion and Future Work

Formal verification increases the trustworthiness of software. In this paper, we present a formalisation
of the double-pushout approach with injective matching over node and edge labelled directed graphs, in
the proof assistant Isabelle/HOL. The formalisation uses the extensible locale mechanism, which allows
us to combine theories and to structure our work.

We first formalise graphs and morphisms and prove several properties, such as the well-definedness
of morphism composition. Direct derivations are introduced in terms of deletion and gluing. We prove
their correspondence to double-pushouts. We also prove that pushouts are unique up to isomorphism.
Although Isabelle is not able to discharge most of the generated proof obligations automatically, the
available proof methods support the discharging process.

We are currently revising our design in order to increase readability and facilitate certain automated
proofs. The use of locales in conjunction with dedicated record types to represent graphs and morphisms,
as implemented by Noschinski [18], substantially decreases the amount of parameters used in a locale.
This increases clarity since not all components of a graph (e.g. set of nodes/edges and source/target
mappings) or the components of a morphism have to be stated explicitly. Additionally, we started to rely
on total functions exclusively. This change removes the option type and thereby allows simpler proof
obligations which in turn facilitate automated proofs.

Future developments will include the proof of classical DPO results such as the Church-Rosser the-
orem. We also plan the extension towards attributed DPO graph transformation. Our long-term goal is
the development of a practical Isabelle-based proof assistant for the verification of individual programs
in the graph programming language GP 2 [5].
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The complexity class NP of decision problems that can be solved nondeterministically in polynomial
time is of great theoretical and practical importance where the notion of polynomial-time reductions
between NP-problems is a key concept for the study of NP. As many typical NP-problems are natu-
rally described as graph problems, they and their reductions are obvious candidates to be investigated
by graph-transformational means. In this paper, we propose such a graph-transformational approach
for proving the correctness of reductions between NP-problems.

1 Introduction

The complexity class NP of decision problems that can be solved nondeterministically in polynomial time
is of great theoretical and practical importance, with the notion of polynomial-time reductions between
NP-problems being a key concept for the study of NP and, in particular, of NP-completeness. Since
the early analysis of the class NP it is known that many graph-theoretic problems are NP-complete (cf.
e.g. [1, 2]). Examples include finding a clique, a Hamiltonian cycle, a vertex cover, an independent set,
a vertex coloring, etc. Moreover, many typical NP-problems are naturally described as graph problems,
such as routing and scheduling problems as well as various further optimization and planning problems.
Usually the complexity class NP as well as the notion of complexity-theoretic reductions are defined
by means of (polynomial-time) Turing machines. However, explicit problems and constructions are
described on some higher level with much more abstraction. Polynomial graph transformation units
[3, 4] may be helpful not only for specifying and understanding decision problems and reductions, but
also for obtaining correctness proofs in a systematic way. In [5], it has been shown that polynomial graph
transformation units are a formal computational model for decision problems in NP. In [6], the problems
of finding a clique, an independent set, a vertex cover and a Hamiltonian cycle are modeled as graph
transformation units, and reductions are characterized by deadlock-free and confluent polynomial graph
transformation units. Moreover, a proof principle is proposed for proving the correctness of reductions.
It is based on a certain interaction of the unit of an NP problem and the unit of a reduction requiring a
family of auxiliary variants of the reduction unit. In this paper, we continue this research by proposing
a novel graph-transformation-based framework for proving the correctness of reductions between NP-
problems. As correctness requires to construct certain derivations of one kind from certain derivations
of another kind the initial graphs of which are connected by a third kind of derivations, we provide a
toolbox of operations on derivations that allows such constructions. In particular, we employ operations
based on parallel and sequential independence of rule applications.

The paper is organized as follows. In Section 2 and 3, we recall the notions of graph transformation
and graph transformation units. In Section 4, we present the notion of graph-transformational modeling
of NP-problems. In Section 5, we introduce the notion of graph-transformational modeling of reductions.
Section 6 discusses the correctness proofs of such reductions. Section 7 concludes the paper.
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2 Preliminaries

In this section, we recall the basic notions and notations of graphs and rule-based graph transformation
as far as needed in this paper.

Graphs Let Σ be a set of labels with ∗ ∈ Σ. A (directed edge-labeled) graph over Σ is a system
G = (V,E,s, t, l) where V is a finite set of vertices, E is a finite set of edges, s, t : E → V and l : E → Σ

are mappings assigning a source, a target and a label to every edge e ∈ E. An edge e with s(e) = t(e)
is called a loop. An edge with label ∗ is called an unlabeled edge. In drawings, the label ∗ is omitted.
Undirected edges are pairs of edges between the same vertices in opposite directions. The components
V , E, s, t, and l of G are also denoted by VG, EG, sG, tG, and lG, respectively. The empty graph is denoted
by /0. The class of all directed edge-labeled graphs is denoted by GΣ.

For graphs G,H ∈ GΣ, a graph morphism g : G → H is a pair of mappings gV : VG → VH and
gE : EG → EH that are structure-preserving, i.e., gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and
lG(e) = lH(gE(e)) for all e ∈ EG. If the mappings gV and gE are bijective, then G and H are isomorphic,
denoted by G ∼= H. If they are inclusions, then G is called a subgraph of H, denoted by G ⊆ H. For a
graph morphism g : G→ H, the image of G in H is called a match of G in H, i.e., the match of G with
respect to the morphism g is the subgraph g(G)⊆ H.

Rules and rule application A rule r = (L ⊇ K ⊆ R) consists of three graphs L,K,R ∈ GΣ such that
K is a subgraph of L and R. The components L, K, and R are called left-hand side, gluing graph, and
right-hand side, respectively.

The application of r to a graph G consists of the following three steps. (1) Choose a match g(L) of
L in G. (2) Remove the vertices of gV (VL) \ gV (VK) and the edges of gE(EL) \ gE(EK) yielding Z, i.e.,
Z = G− (g(L)− g(K)). (3) Add R to Z by gluing Z with R in g(K) (up to isomorphism) yielding H.
The construction is subject to the dangling condition ensuring that Z becomes a subgraph of G so that H
becomes a graph automatically. Moreover, we require the identification condition, i.e., if different items
of L are mapped to the same item in g(L), then they are items of K. Sometimes any identification may be
forbidden. Then we add the postfix (inj) to the rule. The construction produces a right match h(R) that
extends g(K) by the identity on R−K (up to isomorphism).

The application of r to G w.r.t. g is called direct derivation and is denoted by G=⇒
r

H (where g is
kept implicit). A derivation from G to H is a sequence of direct derivations G0=⇒

r1
G1=⇒

r2
· · ·=⇒

rn
Gn

with G0 = G, Gn ∼= H and n ≥ 0. r1 · · ·rn is called application sequence. If r1, · · · ,rn ∈ P, then the
derivation is also denoted by G n

=⇒
P

H. If the length of the derivation does not matter, we write G ∗
=⇒

P
H.

A rule r = (L⊇K ⊆ R) may be equipped with a negative application condition (NAC) N with L⊆N.
It prevents the application of r to a graph G if the match g(L) can be extended to a match g(N).

Let |S| denote the cardinality of a finite set S and size(G) = |VG|+ |EG| the size of a graph G. It
is worth noting that the application of a given (fixed) rule to G can be performed in polynomial time
provided that the equality of labels can be checked in polynomial time. This is due to the fact that the
number of graph morphisms from L to G is bounded by size(G)size(L) so that a match can be found in
polynomial time. The further steps of the rule application can be done in linear time.

It may be noted that the chosen notion of rule application fits into the DPO framework as introduced
in [7] (see, e.g., [8] for a comprehensive survey). For details on NACs, we refer to [9].
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Extension and independence Let d = (G ∗
=⇒

P
H) and G be extended to Ĝ by adding some vertices and

some edges with new or old vertices as sources and targets. Then it is well-known that d can be extended
to Ĝ ∗

=⇒
P

Ĥ if none of the direct derivations of d removes a source or target of a new edge and if, in the

case of a negative application condition, the added vertices and edges do not contradict it.
Let ri = (Li ⊇ Ki ⊆ Ri) for i = 1,2 be rules. Two direct derivations G=⇒

ri
Hi with matches gi(Li) are

parallel independent if g1(L1)∩g2(L2)⊆ g1(K1)∩g2(K2). Successive direct derivations G=⇒
r1

H1=⇒
r2

X

with the right match h1(R1) and the (left) match g′2(L2) are sequentially independent if h1(R1)∩g′2(L2)⊆
h1(K1)∩g′2(K2). It is well-known that parallel independence induces the direct derivations H1=⇒

r2
X and

H2=⇒
r1

X with matches g′2(L2) ∼= g2(L2) and g′1(L1) ∼= g1(L1) respectively and that sequential indepen-

dence induces a derivation G=⇒
r2

H2=⇒
r1

X with matches g2(L2)∼= g′2(L2) and g′1(L1)∼= g1(L1) (cf., e.g.,

[8, 10, 11]).
The two constructions can be extended to derivations by simple inductions. Sets of rules P1 and P2

are called independent if each two applications of a rule of P1 and a rule of P2 applied to the same graph
are parallel independent and, applied one after the other, sequentially independent. In the special case
of P = P1 = P2, we say that P is independent. Then the following hold: (1) G n

=⇒
P1

H1 and G m
=⇒

P2
H2

induce H1
m

=⇒
P2

X and H2
n

=⇒
P1

X for some X , and (2) G n
=⇒

P1
H1

m
=⇒

P2
X induces G m

=⇒
P2

H2
n

=⇒
P1

X for some H2.

The derivations are obtained by repeating the respective constructions for direct derivations of the given
derivations as long as possible. One way to look at the situation is that the P2-derivation is moved either
forward or backward along the P1-derivation. Therefore, we refer to the resulting P2-derivation as moved
variant of the given P2-derivation.

3 Graph Transformation Units

In this section, the basic notions and notations of graph transformation units (see, e.g., [3, 12]) are
recalled using graphs, rules and rule application as introduced in the previous section. Besides a set of
rules, a graph transformation unit provides two graph class expressions to specify initial and terminal
graphs and a control condition to regulate the derivation process.

We restrict the consideration to graph class expressions e that specify graph classes SEM(e) ⊆ GΣ

such that membership can be decided in polynomial time. In examples, we use (1) forbidden(F ) for
some finite F ⊆ GΣ with SEM(forbidden(F )) = {G | there is no match f : F → G for any F ∈F} and
(2) some constant terms like undirected, unlabeled, simple, and loop-free referring to the class of undi-
rected graphs, unlabeled graphs, simple graphs without parallel edges, and loop-free graphs respectively.
The term standard specifies the intersection of these four graph classes. Moreover, we use the term
bound(N) that specifies the set of all graphs with a single vertex, a single bound-loop and an arbitrary
number of unlabeled loops. Another useful graph class expression is reduced(P) for some finite set of
rules P that specifies the class of graphs to which none of the rules of P can be applied. Finally, we use
the binary operator + for graph class expressions specifying the disjoint union of the graphs of the corre-
sponding graph classes. The membership problems of all explicitly used graph class expressions can be
checked in polynomial time. forbidden and reduced are variants of the matching problem. The proper-
ties of the standard expressions follow from an inspection of the edges which applies also to bound(N).
The disjoint union symbol is only used in standard + bound(N). Given a graph, one can identify the
component bound(k) for some k by inspecting all edges. The rest of the graph must be checked with
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respect to standard.
As control conditions, we use extended regular expressions over sets of rules. Let C be a regular

expression over some set of rules P and d = (G ∗
=⇒

P
H). Then d satisfies C if the application sequence of

d is in L(C) where L(C) is the regular language specified by C. This is denoted by G ∗
=⇒
P,C

H. Employing

a finite automaton corresponding to the regular expression, one can control such derivations stepwise,
meaning that the allowed and applicable rules can be determined. In this way, satisfaction can be checked
in polynomial time for derivations of polynomial lengths. In an extended regular expression, the Kleene
star ∗ behind a rule may be replaced by !, where r! requires that r be applied as long as possible (in
contrast to r∗ that allows to apply r arbitrarily often). As the stepwise control provides all currently
applicable rules, the applicability of r is included so that the control of r! does not require any extra time.
In examples, the rules are listed so that their numbers in this order can be used to refer to them in control
conditions.

A graph transformation unit is a system gtu = (I,P,C,T ) where I is an initial graph class expres-
sion, P is a finite set of rules, C is an extended regular expression over P and T is a terminal graph
class expression. The components I, P, C and T of gtu are also denoted by Igtu, Pgtu, Cgtu and Tgtu,
respectively. The semantics of gtu is the binary relation SEM(gtu) = (SEM(I)× SEM(T ))∩ ∗

=⇒
P,C

. A

derivation G ∗
=⇒
P,C

H with G ∈ SEM(I) and H ∈ SEM(T ) is called successful, denoted by G ∗
=⇒
gtu

H. As

long as a derivation G ∗
=⇒

P
H with G ∈ SEM(I) follows the stepwise control of C, it is called permitted

and denoted by G ∗
=⇒
P,C?

H.

In examples, a graph transformation unit is presented schematically where the components I, P, C,
and T are listed after respective keywords initial, rules, cond, and terminal.

A graph transformation unit is polynomial if there is a polynomial p for each permitted derivation
G n
=⇒
P,C?

H such that n≤ p(size(G)). A polynomial graph transformation unit gtu is functional if (1) every

permitted derivation can be prolonged into a successful one and (2) for every initial graph G every
successful derivation from G yields the same terminal graph (up to isomorphism). In this case, the
resulting graph is denoted by gtu(G).

Note that we restrict ourselves to graph class expressions with polynomial membership problems for
specifying initial and terminal graphs and to extended regular expressions as control conditions that can
be checked stepwise in polynomial time. Therefore, our definition of polynomial graph transformation
units is a special case of the one given in [6] where a more general kind of control conditions is allowed.

4 Graph-Transformational Modeling of NP-Problems

Based on its input-output semantics, a graph transformation unit can also be interpreted as a model of
a decision problem. This problem belongs to the class NP if the length of each derivation of the unit is
polynomially bounded and the proper nondeterminism is provided by the general functioning of units.
This means that the usual technique to prove polynomial termination can be applied to show that the
decision problem of a unit is in NP. The four examples are further considered in Sections 5 and 6.
Definition 1. Let gtu = (I,P,C,T ) be a graph transformation unit. Then the decision problem of gtu,
denoted by DEC(gtu) : SEM(I)→ BOOL, yields TRUE for G ∈ SEM(I) if (G,H) ∈ SEM(gtu) for some
H ∈ SEM(T ) and FALSE otherwise.
Observation 1. Let gtu be a graph transformation unit. Then DEC(gtu) ∈ NP if gtu is polynomial.
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hampath

initial: standard

rules:
α

⊇
NAC

⊇ ⊆
α

α

⊇ ⊆
run

1

run

2

α

⊇
1 2

⊆
1 2

runp

cond: 1!; 2; 3∗

terminal: forbidden( α )

(a) Hamiltonian path problem

k-bounded-spantree

initial: standard

rules:
β

⊇
NAC

⊇ ⊆
β

. . .
k loops

β

⊇ ⊆
t

t β

⊇
t

⊆
t tt

cond: 1!; 2; 3∗

terminal: forbidden( β )

(b) k-bounded spanning tree problem

Figure 1: Graph transformation units hampath and k-bounded-spantree

Proof. By definition, the membership problems of the classes of initial and terminal graphs, and the step-
wise control of rule application are polynomial and the lengths of permitted derivations are polynomially
bounded. Moreover, the rule application needs polynomial time and its nondeterminism is polynomially
bounded so that DEC(gtu) ∈ NP.

Example 1. The Hamiltonian path problem asks whether a graph contains a simple path that visits all
vertices. The problem is modeled by the unit in Figure 1a. The length of each of its derivations is
obviously bounded by twice the number of vertices of the initial graph such that DEC(hampath) ∈ NP.

Example 2. The k-bounded spanning tree problem asks whether, for a given bound k ∈ N, a graph
contains a spanning tree with a vertex degree not greater than k. The problem is modeled by the unit in
Figure 1b. The length of each of its derivations is obviously bounded by twice the number of vertices of
the initial graph such that DEC(k-bounded-spantree) ∈ NP.

An often easy way to show the polynomiality of a unit gtu and as a consequence that DEC(gtu)∈NP
is by finding a natural variable the value of which is polynomially bounded and decreases whenever a
rule of gtu is applied. This is a well-known fact.

Fact 1 (Polynomial Termination). Let gtu = (I,P,C,T ) be a graph transformation unit, f : GΣ → N be
a function and p a polynomial such that f (x)≤ (p◦ size)(x) for each x ∈ GΣ and f (G)> f (H) for each

direct derivation G=⇒
P

H. Then the length k of every successful derivation G k
=⇒

P
H is polynomially

bounded in the size of the input graph G such that DEC(gtu) ∈ NP.

Example 3. The polynomial termination of hampath may be shown using Fact 1 by separating the unit
into two units. The first one with rule 1 as its only rule terminates in a linear number of steps as the
number of vertices without α-loop decreases if a rule is applied. The second unit with rules 2 and 3
terminates in a linear number of steps as the number of vertices with α-loops decreases if a rule is
applied. The polynomial termination of k-bounded-spantree can be shown analogously.

Example 4. The independent set problem asks whether a graph contains a set of k vertices, no two of
which are connected by an edge. The problem is modeled by the unit in Figure 2a. As the number of
loops decreases whenever the rule is applied, one gets DEC(independent-set) ∈ NP.
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independent-set

initial: standard + bound(N)

rules:
α

bound

⊇
NAC

bound

⊇
bound

⊆
α

bound

terminal: forbidden(
α α

,

bound

)

(a) Independent set problem

clique

initial: standard + bound(N)

rules:
α

bound

⊇
NAC

bound

⊇
bound

⊆
α

bound
α α

⊇
NAC

α α

⊇ ⊆ β

cond: 1!; 2!

terminal: forbidden(
β

,

bound

)

(b) Clique problem

Figure 2: Graph transformation units independent-set and clique

Example 5. The clique problem asks whether a graph contains a set of k vertices every two of which
are connected by an edge, constituting a complete subgraph. The problem is modeled by the unit in
Figure 2b. As the number of unlabeled loops decreases whenever the first rule is applied and the number
of α-loops decreases whenever the second rule is applied, one gets DEC(clique) ∈ NP.

5 Graph-Transformational Modeling of Reductions

Reductions between NP-problems are a key concept for the study of the class NP. Given two NP-
problems DEC and DEC′, a reduction RED is a function from the inputs of DEC to the inputs of DEC′

that can be computed in polynomial time and is subject to the following correctness condition for each in-
put x of DEC: DEC(x) = TRUE if and only if DEC′(RED(x)) = TRUE. If the NP-problems are given by
polynomial graph transformation units, then a reduction can be modeled as a functional and polynomial
graph transformation unit.

Definition 2 (Reduction). Let gtu and gtu′ be polynomial graph transformation units. Let red = (Igtu,
Pred,Cred, Igtu′) be a functional and polynomial graph transformation unit. Then red is a reduction of gtu
to gtu′ if the following holds for all G ∈ SEM(Igtu): (G,H) ∈ SEM(gtu) for some H ∈ SEM(Tgtu) if and
only if (red(G),H ′) ∈ SEM(gtu′) for some H ′ ∈ SEM(Tgtu′).

Observation 2. Let red be a reduction of gtu to gtu′. Then the function RED = SEM(red) : SEM(Igtu)→
SEM(Igtu′), defined by RED(G)= red(G), is a reduction of DEC(gtu) to DEC(gtu′), denoted by DEC(gtu)
≤ DEC(gtu′).

Proof. As red is functional and polynomial, RED is a function that is computed in polynomial time. Its
correctness can be shown as follows: Let G ∈ SEM(Igtu) with DEC(gtu)(G) = TRUE meaning that there
is an H ∈ SEM(Tgtu) with (G,H) ∈ SEM(gtu). As red is a reduction of gtu to gtu′, this is equivalent to
(red(G),H ′) ∈ SEM(gtu′) for some H ′ ∈ SEM(Tgtu′), i.e., DEC(gtu′)(red(G)) = TRUE. As red(G) =
RED(G), RED turns out to be a reduction of DEC(gtu) to DEC(gtu′).

The observation means that DEC(gtu) ≤ DEC(gtu′) can be established by means of a reduction of
gtu to gtu′. The polynomiality of such a reduction can be shown by using Fact 1. The functionality can
be shown using the following well-known fact.
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hampath-to-2-bounded-spantree

initial: Ihampath

rules:

cond: ε

terminal: I2-bounded-spantree

(a) Hamiltonian path to 2-bounded spantree

clique-to-independent-set

initial: Iclique

rules:
bound

γ ⊇
NAC

bound

⊇
bound

⊆
bound

γ
(inj)

γ

⊇ ⊆
γ ⊇ ⊆

cond: 1!; 2!; 3!

terminal: Iindependent-set

(b) Clique to independent set

Figure 3: Graph transformation units for reductions

Fact 2. Let gtu = (I,P,C,T ) be a polynomial graph transformation unit. Then gtu is functional if the
following hold:

1. P is independent,

2. (G,H) ∈ SEM(gtu) implies H ∈ reduced(P), and

3. G ∗
=⇒
P,C

H for G ∈ SEM(I) and H ∈ reduced(P) implies (G,H) ∈ SEM(gtu).

Proof. As gtu is polynomial, the lengths of its derivations are finitely bounded. The required indepen-
dence implies the confluence of P-derivations. Both together means that for each G ∈ SEM(I), there is –
up to isomorphism – exactly one H ∈ reduced(P) with G ∗

=⇒
P

H. Properties 2 and 3 make sure that this

functionality holds for SEM(gtu), too.

Example 6. According to the considerations in Examples 1 and 2, we have DEC(hampath)(G) = TRUE
if and only if G has a Hamiltonian path, and we have DEC(k-bounded-spantree)(G) = TRUE if and
only if G has a spanning tree with a vertex degree not greater than k. A Hamiltonian path is connected
and cycle-free and visits all vertices such that it is a spanning tree with vertex degree 2. Conversely, a
spanning tree with vertex degree 2 or smaller must be a simple path and, as it covers all vertices, therefore,
a Hamiltonian path. In other words, the identity on the initial graphs of hampath and 2-bounded-spantree
is a reduction of hampath to 2-bounded-spantree, as specified in the unit in Figure 3a.

As there are no rules to be applied and as the regular expression ε specifies the language with the
empty string as its sole element allowing derivations of length 0 only, each initial graph derives itself ex-
clusively, which is terminal at the same time because the initial graphs of hampath and 2-bounded-spantree
coincide. The unit is obviously polynomial and functional.

Example 7. The reduction from clique to independent-set is modeled by the unit in Figure 3b. Each
initial graph has the form G+bound(k) for some k ∈ N. The first rule can be applied to two vertices of
G that are not connected by a γ-edge and neither of them has a bound-loop, connecting them by such
an edge. Hence the rule can be applied |VG| · (|VG|−1)/2 times and must be applied as often due to the
control condition. Then, any two vertices of G are connected by γ-edges. The second rule can be applied
to an unlabeled edge of G with a parallel γ-edge, removing both. Due to the control condition, this must
be done for all such pairs of edges in G. The number of steps is |EG|, and γ-edges remain between all
pairs of vertices of G that are not connected in G. By applying the third rule as long as possible, all
γ-edges are replaced by (unlabeled) edges such that the resulting graph is isomorphic to the dual one of
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the initial graph. In particular, the unit turns out to be functional and polynomial. The overall lengths of
derivations is |VG| · (|VG|−1) for G ∈ SEM(I). The rule i for i = 1,2,3 is independent of itself, so that its
application as long as possible is confluent in every case. And as all intermediate graphs of derivations
contain γ-edges, the terminal graphs are only reached at the end. Finally, the unit has the correctness
property of a reduction. If two vertices in a graph G are connected, then they are not connected in the
dual graph and the other way round. Consequently, a clique in G becomes an independent set in the dual
graph and the other way round.

The correctness proofs in Example 6 can be found in Karp [1] and in Garey and Johnson [2]. This
traditional graph theoretic way of proving the correctness of reductions can always be employed for
proving the correctness of a graph-transformational reduction if the reduction as well as the two NP-
problems modeled by the two units are characterized in graph-theoretic terms. In the next section, we
investigate an alternative graph-transformational way of proving the correctness of reductions.

6 Proving the Correctness of Reductions

In this section, we investigate possibilities to prove the correctness of reductions by graph-transforma-
tional means.

Let gtu and gtu′ be two polynomial graph transformation units and red = (Igtu,Pred,Cred, Igtu′) be a
polynomial and functional graph transformation unit. Then red is a reduction of DEC(gtu) to DEC(gtu′)
if the following correctness conditions hold:

Forward If G ∗
=⇒
gtu

H is a successful derivation of gtu, then there is a successful derivation red(G)
∗

=⇒
gtu′

H ′

for some H ′ ∈ SEM(Tgtu′).

Backward If red(G)
∗

=⇒
gtu′

H ′ is a successful derivation of gtu′, then there is a successful derivation

G ∗
=⇒
gtu

H for some H ∈ SEM(Tgtu).

The diagram in Figure 4a illustrates the task. Given a gtu- and a red-derivation, one must find
an appropriate gtu′-derivation, and conversely given a gtu′-derivation and the same red-derivation, one
must find an appropriate gtu-derivation. To achieve this, we propose a kind of toolbox that provides
operations on derivation structures where the latter are defined in Definition 3 and the operations on
them in Definition 4.

A derivation structure is a finite directed graph, the vertices of which are graphs and the edges are
direct derivations.

Definition 3. A derivation structure is a finite unlabeled directed graph DS, such that VDS ⊆ GΣ and
every edge e ∈ EDS is a direct derivation e = (G=⇒

r
H) with sDS(e) = G and tDS(e) = H. The class of

all derivation structures is denoted by DS .

The operations add derivations to given derivation structures so that the results are derivation struc-
tures. The idea is (1) to start with the derivation structure in Figure 4b and to apply operations until
the derivation red(G)

∗
=⇒
gtu′

H ′ appears as a substructure and (2) to start conversely with the derivation

structure in Figure 4c and apply operations until the derivation G ∗
=⇒
gtu

H appears as a substructure.
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G

H

red(G)

H ′

∗
red

∗ gtu ∗ gtu′forward

backward

(a) Proof schema

G

H

red(G)
∗

red

∗ gtu

(b) initial derivation structure
(forward)

G red(G)

H ′

∗
red

∗ gtu′

(c) initial derivation structure
(backward)

Figure 4: Correctness proof schema and initial derivation structures

We provide five operations which are defined as binary relations on derivation structures. (1) conflux
of two parallel independent rule applications adding two corresponding rule applications (cf. Section 2)
to the derivation structure; (2) interchange of two sequential independent rule applications adding one
corresponding derivation consisting of the interchanged rule applications (cf. Section 2) to the derivation
structure; (3) sprout with a functional graph transformation unit as parameter attaching a successful
derivation of the parameter starting in a graph of the given derivation structure; (4) couple with a span
of parallel independent rule applications as parameter adding a corresponding extended right part of the
span to the derivation structure if an extension of the left part of the span is present; and (5) associate
with a pair of particular derivations with the same first graph and the same last graph as parameter adding
an extension of the second derivation to the derivation structure if a corresponding extension of the first
one is present. All these enlargements of the derivation structures are formally defined by unions of
derivation structures. Concerning conflux and interchange, the rule applications corresponding to the
given independent ones are unique up to isomorphism. One of the choices is taken. Concerning sprout,
there are many derivations G ∗

=⇒ funct(G) with a result unique up to isomorphism. Again one of them
is chosen. Concerning couple and associate, the extensions are unique up to isomorphism provided they
exist at all. Then one of the extensions is added. The extensions may not exist because the second
component of the span or the pair may remove vertices that are needed for the extensions. In such a case,
the respective operation is undefined.

Definition 4. 1. conflux: Let DS∈DS with two parallel independent direct derivations G=⇒
ri

Hi for

i = 1,2 as substructure. Let DS′ be the enlargement of DS by two corresponding direct derivations
d1 = (H1=⇒

r2
X) and d2 = (H2=⇒

r1
X) provided by the parallel independence, i.e., DS′ = DS∪d1∪

d2. Then (DS,DS′) ∈ conflux.

2. interchange: Let DS ∈DS with two sequential independent direct derivations G=⇒
r1

H1=⇒
r2

X as

substructure. Let DS′ be the enlargement of DS by one corresponding derivation d =
(G=⇒

r2
H2=⇒

r1
X) provided by the parallel independence, i.e., DS′ = DS∪ d. Then (DS,DS′) ∈

interchange.

3. sprout(funct): Let funct be a functional graph transformation unit, DS ∈ DS and G ∈ VDS. Let
DS′ be the enlargement of DS by attaching one of the derivations d = (G ∗

=⇒ funct(G)) at G, i.e.,
DS′ = DS∪d. Then (DS,DS′) ∈ sprout(funct).

4. couple(span): Let span be a pair of parallel independent direct derivations d̂i = (Ĝ=⇒
ri

Ĥi) for

i= 1,2, DS∈DS , and G ∗
=⇒H1 be a substructure of DS extending d̂1. Let DS′ be the enlargement

of DS by adding one corresponding extension d2 = (G=⇒
r2

H2) of d̂2, i.e., DS′ = DS∪d2, provided

it exists. Then (DS,DS′) ∈ couple(span).
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G G1 G2 G3

G1 X X ′ G′1

G2

!

1
! 1

!

2

! 1

!

3
! 1 ! 1

!

1

! 2

!

2

!

3

(a) Derivation structure in Example 8

G G′1 G′2

G1 H1 H ′1

G2 H2 H ′2

G3 H3 H ′3

!
1′

! 1

2′

! 1 ! 1

2

2′

2 2

∗ 3

2′

∗ 3 ∗ 3

2′

(b) Derivation structure in Example 9

Figure 5: Derivation structures in Example 8 and 9

5. associate(pair): Let pair be a pair of derivations d̂i = (Ĝ ∗
=⇒ Ĥ) for i = 1,2, DS ∈ DS , d1 =

(G ∗
=⇒H) be a substructure of DS extending d̂1. Let DS′ be the enlargement of DS by adding

one extension d2 of d̂2 from G to H, i.e., DS′ = DS∪ d2, provided it exists. Then (DS,DS′) ∈
associate(pair).

In the following examples, we demonstrate how the operations may be employed to prove the cor-
rectness of reductions.

Example 8. Using the operations conflux, interchange and sprout, the correctness of
clique-to-independent-set can be shown as follows. Let G !

=⇒
1

G1
!

=⇒
2

G2 be a successful derivation in

clique. As G2 is terminal, it has no β -edges so that G1
!

=⇒
2

G2 has length 0 and can be omitted. Let

G !
=⇒

1
G1

!
=⇒

2
G2

!
=⇒

3
G3 be a successful derivation of clique-to-independent-set reducing G where the

numbers of rules are overlined to distinguish them from the rules 1 and 2 of clique. Each rule application
of rule 1 is parallel independent of each rule application of rule i for i = 1,2,3. Therefore, the applica-
tion of conflux as long as possible to the rule applications of the two given derivations yields - among
others - a derivation G3

!
=⇒

1
G′1 being a moved variant of G !

=⇒
1

G1 as defined at the end of Section 2. Fig-

ure 5a illustrates the derivation structure. The involved rule applications keep the set of vertices invariant.
Moreover, the independence of all rule applications makes sure that the sets of vertices with α-loops in
G1 and G′1 are equal. Let v and v′ be two such vertices which are connected by an edge e in G according

to the choice of G !
=⇒

1
G1. Consequently, e gets a parallel γ-edge in G1, both are removed between G1

and G2, and v and v′ are not connected in G3. This means that G′1 is a terminal graph of independent-set.
Altogether, the reduction is forward correct. The backwards correctness follows analogously, starting
from the derivation reducing G and a successful derivation G3

!
=⇒

1
G′1 in independent-set and applying

interchange (instead of conflux) to the sequential independent rule applications of rule i for i = 1,2,3,
followed by one application of rule 1. This yields a derivation G !

=⇒
1

G1 as a moved variant of G3
!

=⇒
1

G′1.

As each two vertices with α-loops in G′1 are not connected, the definition of the reduction implies that

they are connected in G1. In particular, rule 2 of clique cannot be applied and the derivation G1
!

=⇒
2

G2

has length 0. Adding it with sprout at G1, one gets a successful derivation in clique. This completes the
proof.
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Example 9. In proving the correctness of hampath-to-2-bounded-spantree, all five operations are used.
Let G !

=⇒
1

G1=⇒
2

G2
∗

=⇒
3

G3 be a successful derivation of hampath. This is a start structure as the re-

duction is the identity and one can begin to construct the corresponding derivation immediately. Its first
section is G !

=⇒
1′

G′1 necessarily which can be added with sprout at G using the functional unit with the

rule 1′ and 1′! as control condition. The rules of 2-bounded-spantree are primed to distinguish them
from the rules of hampath. The rule sets {1,2,3} and {1′,2′,3′} are independent. Therefore, conflux

applied as long as possible yields the subderivation G !
=⇒

1′
G′1

!
=⇒

1
H1=⇒

2
H2

∗
=⇒

3
H3 where the last three

sections are a moved variant of the given derivation so that H1 contains G and an α-loop, a β -loop and
two ∗-loops at each vertex and H3 contains G3 and a β -loop and two ∗-loops at each vertex. In particu-

lar, H1=⇒
2

H2 is an extension of the left part of the span
run β

⇐=
2

α β

=⇒
2′

α t

. Therefore, couple

can be applied adding the direct derivation H1=⇒
2′

H ′1. Using the known independence, the latter can be

interchanged with the rule applications of G′1
!

=⇒
1

H1 yielding, in particular, G′1=⇒2′ G′2 and G′2
!

=⇒
1

H ′1.

Moreover, conflux can be applied to H1=⇒
2′

H ′1 and the rule applications of H1=⇒
2

H2
∗

=⇒
3

H3 yielding

the moved variant H ′1=⇒2 H ′2
∗

=⇒
3

H ′3. Figure 5b shows the main parts of the derivation structure that is

constructed so far. If H ′2
∗

=⇒
3

H ′3 has length 0, then we are done. The uppermost horizontal derivation is

the result we are looking for. Otherwise, one must repeat the construction done for H1=⇒
2

H2, i.e. cou-

ple, interchange, and then conflux as long as possible, for each of the applications of rule 3 in H ′2
∗

=⇒
3

H ′3

one after the other using the span
t run β

p
⇐=

3

run t α β

=⇒
3′

run t α t

t
. In the end, this yields a

derivation G′2
∗

=⇒
3′

G′3 with the same length as G2
∗

=⇒
3

G3, i.e., n− 1 if G has n vertices. Summarizing,

the resulting derivation G !
=⇒

1′
G′1=⇒2′ G′2

∗
=⇒

3′
G′3 is successful as the derivation picks n−1 edges which

always is a spanning tree, therefore, the reduction turns out to be forward correct.

Conversely, let G !
=⇒

1′
G′1=⇒2′ G′2

∗
=⇒

3′
G′3 be a successful derivation of 2-bounded-spantree. Let v0 be

the vertex matched by rule 2′ and e1, . . . ,en−1 be the edges matched by the following applications of rule
3′ in this order, where e1 is attached to v0. If none of the further edges is attached to v0, then the arguments
proving forward correctness can be converted so that one gets backwards correctness, too. Otherwise,
let ei with i≥ 2 be attached to v0. Without loss of generality, one can assume i = 2 because this case can
always be obtained by interchanges. Then the derivation G′1=⇒2′ G′2=⇒3′ G=⇒

3′
G is an extension of the

upper derivation in the pair

β β β
=⇒2′

β t β

=⇒
3′

β t t
t

=⇒3 ′ t t
t

t
t

=⇒2 ′

t β β

=⇒
3′

t t
t

β

=⇒3′
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so that associate can be applied. This means that each successful derivation can be rearranged by repeated
interchanges and associations in such a way that the conversion of the forward correctness proof works.

There are several further reductions the correctness of which can be shown in a similar line of
consideration, but their documentation here is beyond the space limit of the paper. Examples are
independent-set ≤ clique, k-bounded-spantree ≤ l-bounded-spantree for 2 ≤ k < l and hampath ≤
hamcycle ≤ TSP where TSP is the famous traveling salesperson problem. The latter example works
very similar to clique ≤ independent-set with the exception that the successful derivations of hamcycle
are not moved to the end of the reduction derivation, but only to some intermediate graph where the
corresponding TSP-derivation is constructed, which is further moved along the reduction. The examples
indicate that the following proof procedure is quite promising to result in the correctness of reductions
between NP-problems.

Proof procedure. Let gtu and gtu′ be two polynomial graph transformation units and red = (Igtu,P1 ∪
P2,C, Igtu′) with P1 ∩P2 = /0 be a functional graph transformation unit such that each of its successful
derivations has the form G ∗

=⇒
P1

G ∗
=⇒

P2

red(G). Let Pgtu and P1, P2 and Pgtu′ , as well as Pgtu and Pgtu′ be

disjoint and independent. Then the correctness of red may be proved as follows:

Forward Consider the start structure of Figure 4b.

(f1) Apply conflux as long as possible using the independence of Pgtu and P1. The moved variant of the
given gtu-derivation starting at G is called guide and G = AS active spot being the start graph of a
permitted gtu′-derivation that is built further on.

(f2) Repeat the following operations as long as possible depending on the next rule application permitted
by the stepwise control condition Cgtu′ .

(f21) If the next rule to be applied is the first one of a functional section of a permitted derivation
given by funct, then apply sprout(funct) to AS where the graph funct(AS) is the new AS. Then
apply conflux as long as possible using the independence of Pgtu and Pgtu′ . The moved variant
of the guide is the new guide.

(f22) Otherwise, apply couple(span) for some given span to the first direct derivation of the guide
where this is possible, provided that the prolongation yields a permitted derivation. Then
apply conflux and interchange as long as possible. In particular, the added direct derivation is
moved to AS prolonging the permitted gtu′-derivation. The result graph is the new AS and the
following gtu-derivation is the new guide.

(f3) Afterwards, apply conflux as long as possible using the independence of P2 and Pgtu′ moving the
constructed permitted gtu′-derivation to red(G). Then continue the derivation if Cgtu′ requires further
rule application.

(f4) Check whether the derived graph is in SEM(Tgtu′).

Backward Reverse the procedure of the forward proof by starting with the structure of Figure 4c and
changing the roles of gtu and gtu′.

(b1) Apply interchange instead of conflux as long as possible using the independence of P2 and Pgtu′ .

(b2) Repeat the operation as in (f2), but now using the spans conversely.

(b3) Afterwards, apply interchange as long as possible using the independence of Pgtu and P1.

(b4) Check whether the derived graph is in SEM(Tgtu).
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Preprocessing As the backward proof of hampath-to-2-bounded-spantree shows, a preprocessing may
be necessary before the backward part of the proof procedure can work. The reason is that a graph may
have several successful derivations, but only some of them may be suitable for forward and backward
processing. In such a case, one may apply associate(pair) for appropriate pairs of derivations together
with interchange.

It may be noted that our proof for clique ≤ independent-set in Example 8 must be modified to be
covered by the proof procedure in the following way: α is replaced by α ′ in independent-set and the
corresponding derivation is constructed by applying couple for each rule application where the span

α

⇐=
1

=⇒
1′

α ′

is used.

The proof procedure works very well for several examples, but is far from perfect. For instance,
we have failed to prove the correctness of the reduction from independent set to vertex cover and from
vertex cover to Hamiltonian cycles. The reason seems to be that one needs further operations. But there
are various further reasons why the proof procedure may fail: (1) The chosen units for the involved
NP problems and the reduction may not be suitable. (2) The preprocessing may not yield a successful
derivation for further processing. (3) The processing may get stuck because the proper spans are missing.
(4) The processing may result in a permitted derivation that is not successful. Such problems are not
unusual if the employed proof technique is not complete as it is often the case. Fortunately, each of the
problems indicate how one may find a way out: Try further operations, other modeling units, other spans
for coupling, other pairs for association, new ideas for preprocessing. Confer the conclusion where some
of these points are a bit more elaborated.

7 Conclusion

We have made a proposal on how the correctness of reductions between NP problems may be proved
by graph-transformational means. For this purpose, we have provided a toolbox that allows to construct
successful derivations of one graph transformation unit from successful derivations of another graph
transformation unit that represent positive decisions and are connected by a reduction derivation in their
initial graphs. The approach is an attempt in the early stage of development and needs further investiga-
tion, to shed more light on its usefulness.

1. The proof procedure has turned out to be suitable in several cases, but it seems to fail in other cases
like, for example, for the sophisticated reduction from the vertex cover problem to the Hamiltonian
cycle problem (cf. [1, 2]).

2. To cover more cases or to simplify proofs, one may look for further operations. Candidates are
operations like conflux and interchange that are based on independence including parallelization,
sequentialization, and shift (cf. [13]).

3. Another possibility is to generalize the coupling by considering spans that consist of derivations
rather than direct derivations.

4. The preprocessing needs more attention. An initial graph may have a large class of successful
derivations of which only a few particular ones may be suitable for the further proof procedure.
Therefore, operations that preserve successfulness are of interest in addition to the association.

5. The toolbox relies heavily on independence. Can this be always achieved by respective units? Can
it be relaxed?
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6. Is there any chance of tool support for such correctness proofs? For particular initial graphs, the
proof procedure is of an algorithmic nature. But what about arbitrary successful derivations and
reduction derivations?

7. A reduction between NP problems is a kind of model transformation. Do results of the theory
of model transformations and their correctness proofs like triple graph grammars (cf., e.g., [14])
apply to reductions?

Acknowledgment. We are grateful to the anonymous reviewers for their valuable comments.

References
[1] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W.

Thatcher, editors, Proceedings of a Symposium on the Complexity of Computer Computations, The IBM
Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[2] Michael R. Garey and David S. Johnson. Computers and Intractability – A Guide to the Theory of NP-
Completeness. W.A. Freeman and Company, New York, 1979.

[3] Hans-Jörg Kreowski, Sabine Kuske, and Grzegorz Rozenberg. Graph transformation units – an overview. In
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Traditional program analysis techniques often represent programs as graphs where nodes are pro-
gram entities and edges represent various relations (data flow, control flow, call graphs, etc). Graphs
are a standard representation for programs as they can capture syntactic and semantic structure with
long range dependencies. Recently, “neural” program analysis has been proposed for traditional
analysis tasks. Representing a program as input to a machine learning model is an active area of
research. Popular representations include sequences of tokens, relational databases, and graph neural
networks. In many cases, a graph representation is preferable. Program repair is an example of such
a task. In this talk I will discuss the advantages and challenges of representing programs as graphs in
both traditional and neural program repair.

Speaker Biography. Elizabeth is a PhD student at the University of Pennsylvania advised by
Mayur Naik. She works on models of code for program analysis tasks such as program repair (Hop-
pity1). As an intern at Microsoft Research, Elizabeth worked on the DeepMerge2 project contributing
an edit-aware neural approach to merge programs. More recently, her interests lie in neural test suite
generation (TOGA3), and web3 security. In her free time, Elizabeth enjoys hot coffee and her chow
chow puppy Cinnabon.

1https://openreview.net/pdf?id=SJeqs6EFvB
2https://www.microsoft.com/en-us/research/publication/deepmerge-learning-to-merge-programs/
3https://www.seas.upenn.edu/~edinella/icse-camera-ready.pdf
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As with any detailed model of a complex problem, creating a graph transformation system is hard.
An alternative in some situations is to learn models from historical or observed data or derive them by
optimising a basic model based on some objective function using feedback from simulations or real-
world processes. The session is dedicated to discussing application scenarios and solutions for learning,
in particular, the rules of a graph transformation system with the aim of inspiring collaborative research
on this topic. A preliminary classification of rule learning problems could distinguish these two aspects.

Prescriptive vs descriptive model A model is prescriptive if it is intended as a design of a system to
be built, descriptive if it represents an existing system to be analysed.

In the prescriptive case, creating a model that best suits certain requirements is a form of optimisa-
tion based on a given objective function. In order to assess the fitness of a model, we have to either run
the model directly (e.g. in a simulation) or use it to control a real-world process we can measure. For
example, we may want to optimise the topology management for a decentralised network, maximising
connectivity while minimising the number of links to be maintained. Such requirements should be ex-
pressed by the objective function and the aim should be to optimise the application of a set of basic rules,
e.g. for nodes joining or leaving, making or breaking links.

In the descriptive case, we infer the model from existing data observed from a real process, e.g., the
version history of a software project. This can be a precursor to a prescriptive use of the model in a
re-engineering scenario, e.g., inferring a model of how faults are detected and fixed in software projects
in order to recommend typical fixes. Rules in this case should represent typical fault patterns and their
repair actions.

Online vs offline learning In either of the above scenarios, learning can be online (at runtime, using a
form of reinforcement learning) or offline (based on historical data). In the online case we make contin-
uous observations and use them to modify the model, e.g., in a stochastic or probabilistic model, adding
weight to successful rules (in the prescriptive scenario) or frequently observed rules (in the descriptive
case). In the offline case, there is no direct feedback or continuous update, but for prescriptive models
learning can happen in longer cycles of model inference, usage and feedback.

Based on the above we would like to collect, describe and classify application scenarios for rule
learning, such as network topology management or fault detection and repair, and discuss possible solu-
tions. The result could be a position paper summarising our findings.

Acknowledgements The topic for this panel arose from a series of discussions between the chair,
Nicolas Behr, Bello Shehu Bello, and Sebastian Ehmes, with further input from Marc Santolini and
Ashiq Anjum.
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