
A Lightweight Approach for
Model Checking Variability-Based

Graph Transformations

Mitchell Albers1 Carlos Diego1 Daniel Strüber1,2

N. Damasceno

1 2

Agenda

1. Variability-based (VB) graph transformations

2. Model checking of VB graph transformations
• Baseline model checking technique: Gryphon
• Variability-aware encoding
• Evaluation

2

Variability-Based
Graph Transformation

3

Rule variants

• Need for many similar,
but different rules

• Often created in
"copy and paste" manner

• Error-prone
• Problematic for maintenance
• Performance bottlenecks

4

Overall research objective

• In realistic scenarios, often 100s of similar rules!
• Address situations in which many rule variants which slow down

execution of rule applications as well as analyses
• Objective:

Define an approach to specify and efficiently deal
with rules with many variants

5

Variability-based (VB) rules:
represent rule variants as a "rule product line"

6

Rules with:
• A feature model FM
• Presence conditions (annotations)

Variability-based (VB) rules:
represent rule variants as a "rule product line"

• Benefits:
• Maintainability: all

variants edited at once
• Performance: can reuse

shared parts during
analysis (e.g., matching)

7

• A variability-based rule is a tuple (r, S, pc, vm) over a set of atoms V
• Rule r maximal rule
• Set S of subrules of r subrules
• Function pc: S→Bool(V) presence conditions
• Formula vm∈Bool(V) feature model

• A configuration is a total function cfg : V → { true, false },
configurations can satisfy presence conditions

• Given a configuration cfg, a variant is produced by merging
all subrules s ∈ 𝑆𝑆 𝑠𝑠. 𝑡𝑡. cfg satisfies pc(s).

• The base rule is the subrule common to all variants.

Formalizing VB rules

Washing machine

Locking
Waiting

exit/HeaterOff()

Washing

entry/TempCheck()
Unlocking

[PRESS_START_WITH_DELAY]

/wash.Start()

/ QuickCool()

[PRESS_START]/ wash.Start()

HeaterOn()

9

Efficient application of VB rules

Key idea: during match-finding, first match the rule elements common to
base rule and then extend the identified matches

Subject
transformation

• Translator from OCL to Nested Graph Constraints
• 54 rules in total
• Subject: 36 rules being applied nondeterministically
• Left-hand sides: Between 9 and 37 graph elements

Benchmark
models

• 10 typical OCL constraints + OCL standard library
• Between 1832 and 1854 graph elements

Metrics

• Performance: Execution time (10 runs)

10

Evaluation

Variability-based rule execution was 4 times
as fast as classic rule execution

• ocl01-03: observed no difference
• ocl04-09: average speed gain of 3.9

• Number of successful rule applications
equal for both rule sets

11

• To specify variability-based rules, we extended the Henshin editor

• To apply variabilited-based rules, we extended the Henshin interpreter API

RuleApplication

VariabilityBased
RuleApplication

Match

VariabilityBased
Match

Variability
Configuration

finds

finds

*

*

1

1

Tool support in Henshin

12

13

• Problem: working with
presence conditions can
be awkward
• Rules become big,

editing boolean formulas
by hand is not intuitive

• Solution: Advanced tool
support; filtering and
smart editing functions

Paper:

Daniel Strüber, Stefan Schulz: A Tool Environment for Managing Families of Model Transformation Rules.
ICGT 2016: 89-101.

Tool support in Henshin

Model Checking of
VB Graph Transformation

14

Research objective of this work

• Context: analysis of graph transformations, specifically, model checking
• MC typically prone to state space explosion
• Rule variants can add one level of combinatorial explosion

• Objective:

Address variability to make model checking
of graph transformations more efficient

15

Gryphon: a symbolic model checking technique

• Model checking setup: Given a GTS and a host graph (= initial
state), check whether a (potentially bad) state is reachable

• Properties of form ⋄ 𝜙𝜙, where ϕ is a graph constraint
• Bounded universe (no arbitrary node deletion / creation supported)

• Key idea: encode GTS, graph and property into a lower-level
encoding that can be solved using an available solver

16

Gabmeyer, S., & Seidl, M. (2016). Lightweight Symbolic Verification of Graph Transformation Systems with Off-the-Shelf Hardware Model Checkers.
In B. K. Aichernig & C. A. Furia (Eds.), Tests and Proofs (Vol. 9762, pp. 94–111). Springer International Publishing. https://doi.org/10.1007/978-3-
319-41135-4_6

https://doi.org/10.1007/978-3-319-41135-4_6

Gryphon setup

17

Gryphon Encoding
(Relational Logic)

Off-the-
shelve
Solver

Host graph

Rules

Property

Gryphon’s encoding: variables

• Generate relational variables based on type graph 𝐺𝐺𝑇𝑇 = 𝑉𝑉𝑇𝑇 , 𝐸𝐸𝑇𝑇
• 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∶ 𝑉𝑉𝑇𝑇 ∪ 𝐸𝐸𝑇𝑇 → 𝑅𝑅𝑅𝑅𝑅𝑅

• Generate a unary relational variable 𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅 for each node in 𝑉𝑉𝑇𝑇
• Generate a binary relational variable 𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅 between the source and target

node for each relation in 𝐸𝐸𝑇𝑇
• Include generated relational variables into a bounded universe 𝑈𝑈

• Consisting of a sequence of uninterpreted atoms 𝔸𝔸 (derived from host graph)

• Assign (upper) bounds to relational variables ⊔ ∶ 𝑅𝑅𝑅𝑅𝑅𝑅 → 𝒫𝒫(𝔸𝔸)

18

Gryphon’s encoding: formulae

• For each rule, generate a formula of the form

• With Pre and Post being conjunctions of relational formulas
mimicking matching and modification, respectively

19

Gryphon’s encoding: formulae

20

Contribution: making Gryphon variability-aware

21

VB-aware
Gryphon

VB-aware Encoding
(Relational Logic)

Off-the-
shelve
Solver

Host graph

VB rules

Property

VB-aware encoding: variables

• Generate a unary relational (feature) variable for each feature 𝑓𝑓 ∈ ℱ
𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∶ ℱ → 𝑅𝑅𝑅𝑅𝑅𝑅

• Set bounds for relational feature variables 𝑟𝑟 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℱ to
boolean values ⊔ 𝑟𝑟 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

• Generate a relational formula for each presence condition

22

VB-aware encoding: formulae

• Key idea: make match constraints depend on presence condition
• Whenever the presence condition can be met, then the actual matching can

also be done

• Our scope: edge annotations
• Based on encoding of edges between nodes c and d as 𝑐𝑐 → 𝑑𝑑 ⊆ 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟

• Add presence condition 𝑝𝑝𝑝𝑝 as an implication of the actual matching:
𝑝𝑝𝑝𝑝 → (𝑐𝑐 → 𝑑𝑑 ⊆ 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟)

23

24

Evaluation case: dining philosophers

25

Evaluation case: dining philosophers

26

Evaluation case: dining philosophers

Evaluation case: dining philosophers

27

Performance evaluation: setup

• Evaluated reachability property 𝐹𝐹 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
• Compared standard vs. VB-aware Gryphon

• Standard: 5 rules + input graph + property
• VB-aware: 3 standard rules + 1 VB-aware rule + property

• Considered input graph with 10, 20, 30, 40, 50 philosophers
• Measures execution times for 30 runs each

28

Performance evaluation: results

29

Technique

Standard

Variability-Aware

Conclusion

• Clear performance improvements on input graphs and rules,
especially larger scenarios (up to 45% faster)

• Shows potential for model checking graph transformations
• Performance gains are expected to scale

30

Limitations and future work

• Main limitation: currently only edge creation and deletion supported
• More rigorous soundness and performance argumentation
• More exhausitive empirical evaluation
• Addressing other model checking techniques and paradigms

31

Thank you!

32

	A Lightweight Approach for�Model Checking Variability-Based Graph Transformations
	Agenda
	�Variability-Based�Graph Transformation
	Rule variants
	Overall research objective
	Variability-based (VB) rules:�represent rule variants as a "rule product line"
	Variability-based (VB) rules:�represent rule variants as a "rule product line"
	Slide Number 8
	Efficient application of VB rules
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	�Model Checking of �VB Graph Transformation
	Research objective of this work
	Gryphon: a symbolic model checking technique
	Gryphon setup
	Gryphon’s encoding: variables
	Gryphon’s encoding: formulae
	Gryphon’s encoding: formulae
	Contribution: making Gryphon variability-aware
	VB-aware encoding: variables
	VB-aware encoding: formulae
	Evaluation case: dining philosophers
	Evaluation case: dining philosophers
	Evaluation case: dining philosophers
	Evaluation case: dining philosophers
	Performance evaluation: setup
	Performance evaluation: results
	Conclusion
	Limitations and future work
	Thank you!

