A Lightweight Approach for
Model Checking Variability-Based
Graph Transformations

Mitchell Albers? Carlos Diego* Daniel Striiber'?
N. Damasceno

n 0 \?&:\
7 _\'7[.\7)

2 ($¢) CHALMERS | {8})) GOTEBORGS UNIVERSITET

SR

1 Radboud University %

4
o) g
B SN
) 5 \)
EA & 3 ,
Oty e s =_Sees e

Agenda

1. Variability-based (VB) graph transformations

2. Model checking of VB graph transformations
® Baseline model checking technique: Gryphon
* Variability-aware encoding
 Evaluation

Variability-Basead
Graph Transformation

Rule variants

* Need for many similar,
but different rules

e Often created in
"copy and paste" manner
* Error-prone
e Problematic for maintenanct
e Performance bottlenecks

Rule: foldEntryActions

} LHS

[x1: State
/a

N

,f‘a/'[X: State J

[¥2: State }

[x1: State] RHS

\{ x: State 1
/{ entry: /a J

[x2: State]

Rule: foldExitActions

[x1: State] LHS

/ a
fai ¥: State]

[¥2: State]

[x1: State] RHS

x: State w
entry: /a J

[x2: State]

Overall research objective

* |n realistic scenarios, often 100s of similar rules!

e Address situations in which many rule variants which slow down
execution of rule applications as well as analyses

e Objective:

Define an approach to specify and efficiently deal
with rules with many variants

represent ru

Va

Rule: foldEntryActions

riability-based (VB) rules:
le variants as a "rule product line"

x1: State

x2: State

LHS

/a

RHS
x: State

entry: /a

x2: State

Rule: foldActions

/a

Rule: foldExitActions

x1: State

x2: State

LHS

x1: State RHS

x: State
entry: /a

g

(foldEntry | foldExit)

Rules with:

e A feature model FM

* Presence conditions (annotations)

Variability-based (VB) rules:
represent rule variants as a "rule product line"

Rule: foldActions

e Benefits:
 Maintainability: all
variants edited at once
e Performance: can reuse

shared parts during FM
analysis (e.g., matching)

[foldEntry] [foldExit]

Formalizing VB rules

A variability-based rule is a tuple (r, S, pc, vm) over a set of atoms V
e Ruler maximal rule

e Set S of subrules of r subrules

e Function pc: S—Bool(V) presence conditions

e Formula vmeBool(V) feature model

A configuration is a total function cfg : V — { true, false },
configurations can satisfy presence conditions

Given a configuration cfg, a variant is produced by merging
all subrules s € S s. t. cfg satisfies pc(s).

The base rule is the subrule common to all variants.

Efficient application of VB rules

Rule: foldActions

Washing machine

[PRESS_START_WITH_DELAYJ_ -
_Heateron(™ ~ Waiting
exit/HeaterC*()

[PRESS_START]/ wash.Start()

/wash.Start()

/ QuickCool() Washing
O Unlocking _—

entry/TempCheck()

Key idea: during match-finding, first match the rule elements common to
base rule and then extend the identified matches 9

Evaluation

-

Subject
transformation

-

Benchmark
models

Metrics

Translator from OCL to Nested Graph Constraints
54 rules in total

e Subject: 36 rules being applied nondeterministically
e Left-hand sides: Between 9 and 37 graph elements

10 typical OCL constraints + OCL standard library
Between 1832 and 1854 graph elements

Performance: Execution time (10 runs)

Variability-based rule execution was 4 times
as fast as classic rule execution

e 0cl01-03: observed no difference time (sec) time (sec)
* 0cl04-09: average speed gain of 3.9 classic var.-based
model mean sd mean sd

* Number of successful rule applications oclol <.1 <. <.l <.l
ocl02 <1 <.1 <.1 <.1

equal for both rule sets ocd03 <1 <] 1 <1

ocl04 56.7 10.6 14.2 45
ocl05a 65.1 9.2 13.0 3.4
oclO5b 96.7 20.4 19.7 4238
ocl06 49.0 13.4 11.5 3.9
ocl07 389.493.4 78.4 3.5
oclO8 191.0 11.7 48.4 12.7
ocl09 11.6 2.6 5.0 1.5

average 85.9 16.1 19.0 3.4

Tool support in Henshin
e To specify variability-based rules, we extended the Henshin editor @b

= Rule tr £ 04 var |
‘]
target
preserve preserve - presenve
:0OperationCallExp Trace *:Formula
* : reate
preserve |
IteratorExp 'I preserve ™ .
| sereates QuantifiedGraphCandifign, |-preserve [Properties i3
| alg:* Preserve 1Graph
preser nested | r
CallExp create ll'. |
preserves [7 SOUrCE create target __?‘Ia_ vy
:BooleanLiteralExp : e g . T|Iue‘t domain F'erEI"t_‘,.f Value
= hooleanSymbol=true create = name="trE04var" create create Action '= preserve
Index =
------ forbid Forbids Presence Condition '= deflargsrc) & def(argbody)
Trace Source =1 _:Trace [Lhs]
Target E|_:Gperatiu:unCaIIExp [Lhs]
Type = source : EQbject

* To apply variabilited-based rules, we extended the Henshin interpreter API

RuleApplication 'fmils Match

T ¢!
VariabilityBased |”finds| VariabilityBased . Variability
RuleApplication * Match 1| Configuration

Tool support in Henshin

=

[P ro b I e m : WO r ki n g W it h # Refactorings.henshin_diagram £3 = O %V variability 3%
presence conditions can [rule movewethodisre, g, m) : - E|8/8 w-
«preserves «preserve» [«preserve» Kpresarves Rule moveMethod
be aWkwa rd ':cfs:am:m i L <preservex - :stzamth #1¥ deprecate => wrapper
. ype
o acreates adeletex wcreaten
e Rules become big, s methods | _y Tethode o -
.. ;‘hiet-'-_;;-d' Variability Point ~ Binding
editing boolean formulas S nameem | = rame=n | e T
.] .. eprecate alse
by hand is not intuitive R |
[Properties 22 [f &= ¥ =08 @ Sanitizing 23 & e
Edge b (= Clone group 1: 2 rules, 5 common edges
- b = Clone group 2: 3 rules, 4 common edges
° . Property Value
e Solution: Advanced tool
. . Appearance Index =
° Presence Condition [=wrapper
Supportl fllterlng and Source |_:Class [Rhs]
e, e . Target | _:Method [Rhs]

smart editing functions Type rmethods : Method

8

Paper:

Daniel Striiber, Stefan Schulz: A Tool Environment for Managing Families of Model Transformation Rules.

ICGT 2016: 89-101.

13

Model Checking of
VB Graph Transformation

Research objective of this work

* Context: analysis of graph transformations, specifically, model checking
 MC typically prone to state space explosion
e Rule variants can add one level of combinatorial explosion

e Objective:

Address variability to make model checking
of graph transformations more efficient

15

Gryphon: a symbolic model checking technique

* Model checking setup: Given a GTS and a host graph (= initial
state), check whether a (potentially bad) state is reachable
* Properties of form o ¢, where ¢ is a graph constraint
e Bounded universe (no arbitrary node deletion / creation supported)

* Key idea: encode GTS, graph and property into a lower-level
encoding that can be solved using an available solver

Gabmeyer, S., & Seidl, M. (2016). Lightweight Symbolic Verification of Graph Transformation Systems with Off-the-Shelf Hardware Model Checkers.
In B. K. Aichernig & C. A. Furia (Eds.), Tests and Proofs (Vol. 9762, pp. 94-111). Springer International Publishing. https://doi.org/10.1007/978-3-
319-41135-4 6

https://doi.org/10.1007/978-3-319-41135-4_6

Gryphon setup

Host graph

Off-the-

Encoding
(Relational Logic)

Rules shelve

Solver

Property

17

Gryphon’s encoding: variables

» Generate relational variables based on type graph Gy = (V7, E7)

e relgen : Vy U E; — Rel
e Generate a unary relational variable r € Rel for each node in V;

e Generate a binary relational variable r € Rel between the source and target
node for each relation in E;

* Include generated relational variables into a bounded universe U
e Consisting of a sequence of uninterpreted atoms A (derived from host graph)

 Assign (upper) bounds to relational variables U : Rel - P(A)

Gryphon’s encoding: formulae

e For each rule, generate a formula of the form

F, := Pre(L,Nac,R) = Post(L,R)

 With Pre and Post being conjunctions of relational formulas
mimicking matching and modification, respectively

Gryphon’s encoding: formulae

Jal:A,3a2:A",3b:B,3c: C,—3d: D |

o

LHS . RHS nodes NAC

match(al,a2,b,c,d) A inj(al,b,c,d) —

" I
match constraints injectivity
constraints

L

A"=A—al-|-32nB’=B—§A§’=CﬁD’=DﬁE’=I§

modification constraints

T

non-modihcation constraints

20

Contribution: making Gryphon variability-aware

Host graph

Off-the-

VB-aware VB-aware Encoding

shelve
Gryphon (Relational Logic)

VB rules

Solver

Property

21

VB-aware encoding: variables

e Generate a unary relational (feature) variable for each feature f € F
frelgen : F > Rel

» Set bounds for relational feature variables 7 = f.; 50, (F) to
boolean values U (r) = {true, false}

* Generate a relational formula for each presence condition
PCrelgen - Bool(F) — Bool(Rel)

VB-aware encoding: formulae

* Key idea: make match constraints depend on presence condition

 Whenever the presence condition can be met, then the actual matching can
also be done

e Our scope: edge annotations
* Based on encoding of edges between nodescanddasc = d S Gy

e Add presence condition pc as an implication of the actual matching:
pc = ((c = d) € Crep)

Evaluation case: dining philosophers

Evaluation case: dining philosophers

= Rule left | [Rule rignt
«preserve «preserven
right
eft g
p— : «preserven _ PreTe——
e «preserven _ Kpreserve
_'<Fpr”k”w”’:' < aforbid&1» -Philosopher “Philosopher Kfﬂ|$||§5#” >-Fork
-rar holds — StﬂtE:hLlﬂgl"y' = State:hungr}f
AA «create» «create» A
holds holds
| «forbid#2» «forbid#2» |
aforbid#2» ‘Philosopher ‘Philosopher «forbid#2»
holds holds
. J g

Evaluation case: dining philosophers

= Rule takeFork

features: {f left} |

«preserves pc: f_left
left
«Dreserves pc: I f_left
right
«preserves i
Fork < - :Philosopher
“f?]g';fh’ = state=hungry
/
«forbid#2» ¢
«create»
holds holds
«forbid#2»
:Philosopher

26

Evaluation case: dining philosophers

= Rule release

«presen/ex “preserves
left right
«preserve» «preserven «preserve»
-Fork :Philosopher -Fork
= state=eating->thinking
A
«delete» «deletes
holds holds
$ Rule hungry] = Rule eating
«preserve» dpreserven dpreserve»
‘Philosopher left right
— state=thinking->hungry (Presene> | preserver fﬁsew’f «preservey | <Presenve»
“Fork = Lo s L ‘Fork

holds

— state=hungry->eating

holds

27

Performance evaluation: setup

 Evaluated reachability property F eating

e Compared standard vs. VB-aware Gryphon
e Standard: 5 rules + input graph + property
e \/B-aware: 3 standard rules + 1 VB-aware rule + property

e Considered input graph with 10, 20, 30, 40, 50 philosophers
* Measures execution times for 30 runs each

950 -

900 -

850 -

800 -

time [ms]

90000 -

80000 -

70000 -

750 -

Performance evaluation: results

10 Philosophers

-

40 Philosophers

*

-

6500 -

6000 -

5500 -

250000~

225000 -

200000 -

175000 -

150000 -

20 Philosophers

—

®
50 Philosophers

-

30 Philosophers

30000 -

27000 -

—

24000~

Technique

Standard

Variability-Aware

=
=

Conclusion

e Clear performance improvements on input graphs and rules,
especially larger scenarios (up to 45% faster)

* Shows potential for model checking graph transformations

* Performance gains are expected to scale

Limitations and future work

 Main limitation: currently only edge creation and deletion supported
* More rigorous soundness and performance argumentation

* More exhausitive empirical evaluation

* Addressing other model checking techniques and paradigms

Thank you!

	A Lightweight Approach for�Model Checking Variability-Based Graph Transformations
	Agenda
	�Variability-Based�Graph Transformation
	Rule variants
	Overall research objective
	Variability-based (VB) rules:�represent rule variants as a "rule product line"
	Variability-based (VB) rules:�represent rule variants as a "rule product line"
	Slide Number 8
	Efficient application of VB rules
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	�Model Checking of �VB Graph Transformation
	Research objective of this work
	Gryphon: a symbolic model checking technique
	Gryphon setup
	Gryphon’s encoding: variables
	Gryphon’s encoding: formulae
	Gryphon’s encoding: formulae
	Contribution: making Gryphon variability-aware
	VB-aware encoding: variables
	VB-aware encoding: formulae
	Evaluation case: dining philosophers
	Evaluation case: dining philosophers
	Evaluation case: dining philosophers
	Evaluation case: dining philosophers
	Performance evaluation: setup
	Performance evaluation: results
	Conclusion
	Limitations and future work
	Thank you!

