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Graph Transformation Control Structures
Many practical applications of Graph Transformations (GT) require control structures to
restrict or direct the application of GT rules.

Typical approaches:1

• Non-terminals
• Control expressions (alap, atomic, choice, conditional, ...)
• Integrity constraints
• Procedural abstractions

1R. Heckel & G. Taentzer (2020): Beyond Individual Rules: Usage Scenarios and Control Structures. In: Graph
Transformation for Software Engineers, Springer
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Implementing Control Structures is non-trivial
Most existing GT tools follow a stateful computational model
Ð→ The Graph is destructively modified when GT rules are applied.

Non-determinism during rule application (matching) and rule selection must be dealt
with, typically by using backtracking.

Transactional behaviour may be required, i.e., composite units of rule applications may
need to be performed atomically and in isolation (ACID).
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GT Tools that Support Backtracking
Progres 2

• sophisticated graph programming language with deterministic and non-deterministic
operators

• semantic definition: approx. 300 pages
• Graph reconstruction (at choice points) based on non-standard graph database
system GRAS “undo/redo” mechanism

• platform no longer maintained and abandoned

2Schurr et al. (1999): The PROGRES approach: Language and environment. In: Handbook Of Graph
Grammars And Computing By Graph Transformation: Vol 2: Applications, Languages and Tools, World Scientific
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GT Tools that Support Backtracking
GP / GP2 3

• GP has only 4 operators (n.d. rule application, sequence, branching, and iteration).
• Simple semantics: GP programs theoretically relate to a given input graph all possible
output graphs

• Non-determinism left for execution mechanism to resolve
• Execution handled by York Abstract Machine (YAM), which can reconstruct graphs
• In practice: GP programs may diverge and not terminate
• GP2 adds operators and changes semantics of existing ones to disable backtracking.

3Plump (2009): The Graph Programming Language GP. In: Algebraic Informatics, LNCS 5725, Springer.
Plump (2012): The Design of GP 2. EPTCS 82, 2012, pp. 1-16, doi:10.4204/EPTCS.82.1
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GT Tools that Support Backtracking
Grape/ GrapePress 4

• Internal DSL to Clojure.
• 4 dedicated control structures (transact, n.d. rule matching, n.d. rule choice,
conditional iteration)

• Backtracking implemented in Clojure run-time and based on Neo4J ACID transactions
• Available on Github and as Docker package
• Limitation similar to GP (programs may diverge)
• GrapePress adds computational notebook UI.

4Weber (2017): GRAPE – A Graph Rewriting and Persistence Engine. ICGT 2017, LNCS 10373
Weber (2021): GrapePress - A Computational Notebook for Graph Transformations. ICGT 2021, LNCS 12741
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Other GT Tools - w/o backtracking
Other tools avoid backtracking altogether, for example:
• AGG (Taentzer 2004): “random” choice, CP analysis to avoid non-determinism
• FUJABA (Nickel et al., 2000): activity / story diagrams
• GrGen (Geiß et al. 2006): textual language similar to regular expressions
• GReAT (Agrawal et al. 2006): textual model trafo language + OCL constraints, multiple
graphs

• GROOVE (Rensink 2004): rule priorities, breadth-first exploration with collision
detection
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Observations
Non-determinism is theoretically appealing (simple, but ...
Simple control structures, but leave complexity to interpretation mechanism.

Interpreters have limitations
Programs may diverge, execution may be inefficient, choices may be ignored

Program assurance?
Theoretically computable solutions for graph programs may not be computable in
practice, given current tools. Problematic for Engineering applications that need
assurance.

9 / 32



Functional Graph Rewriting
• Graphs are immutable
• Explicit I/O parameter (rather than implicit global variable)
• Non-deterministic operators replaced by deterministic operators that produce sets of
graphs

• Simple realization of ACID transactions based on the notion of Graph Processes, i.e.,
unsuccessful executions can simply be “forgotten” (Baldan, ICGT 2006).

• Tool: GrapeVine5

5Weber (2022): Tool support for Fully-Persistent Graph Rewriting - GrapeVine. ICGT 2022, LNCS 13349
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Graph Transformations

Graph
A tuple G : (N,E, s, t) where N is a finite set of nodes, E is a finite set of edges, and s, t : E→ N
are total source and target functions, respectively.

Rule
A (GT) rule is a pair of graph morphisms L

φL←Ð I
φRÐ→ R

Transformation
An application of a rule r : L

φL←Ð I
φRÐ→ R to a given host graph G requires the existence of a

graph morphism L mÐ→ G (a match) . The application deletes all elements m(L − I) and
creates co-matched elements m′(R − I), while embedding them in the context m(I). The
transformation of a graph G into a graph G′ with rule r at a matchm is denoted as G

r,m↝ G′.
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Constrained Graph Transformations
Constraints are an important means of limiting (and controlling) the application of (graph
transformation) rules. Our notion of graph constraints implements Orejas et al’s “logic of
graph constraints” (2008).

Constrained Graph
A tuple (G,K) where G is a graph and K is a finite set of graph constraints satisfied by G, i.e,
∀κ ∈ K : G ⊧ κ.

Transformation (of a constrained graph)
A transformation of a constrained graph (G,K)

r,m↝ (G′,K) exists, if there exists a
corresponding transformation for the unconstraint graph G

r,m↝ G′, where the resulting
graph satisfies all constraints, i.e., ∀κ ∈ K : G′ ⊧ κ.

(In the following, we use “graph” to refer to “constrained graph”.)
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(Programmed) Graph Transformation System

(Programmed) Graph Transformation System
A (programmed) Graph Transformation System (GTS) as a tuple (R,C,P), where R is a set of
rules, C is a set of constraints, and P is a set of graph programs.

13 / 32



The Graph Transformation control Algebra (GTA)
Algebra with a single data type: grape

Graph set enumeration (grape)
A non-empty sequence

...
G : ⟨Ḡ1, Ḡ2, .., Ḡn⟩ where each Ḡi is a finite set of graphs. Let

...
G

denote the domain (data type) of grapes.

12 GTA operators:
• 10 deterministic (functional) operators with signature

...
G →

...
G

• 2 non-deterministic (choice) operators
...
G ↝

...
G

The choice operators are added for efficiency reasons only.
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Graph Programs - Syntax
Given a GTS (R,C,P), c ∈ C and r ∈ R, each program p ∈ P is a GTA expression, which is
defined as one of the following:
• (c) and (c) are GTA expressions, called constrain and unconstrain, respectively ;
• ↠ (r) and ↝↝ (r) are GTA expressions, called derive and derive-choice, respectively;
• ⊚(n,≲) with n ∈ N and a total order ≲ on graphs is a GTA expression, called select;
• �(e1, e2), ÷(e1, e2) and ∼..(e1, e2) are GTA expressions, if e1 and e2 are GTA expressions;
They are called sequence, alternative, and alternative-choice respectively;

• ↻ (e) is a GTA expression called loop if e is a GTA expression;
• ↬ (c, e) is a GTA expression called search if e is a GTA expression;
• � and ≢ are GTA expressions called new and distinct, respectively.
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Graph Programs - Semantics
A graph program that does not use any of the two non-deterministic operators are called
deterministic. Its semantic is given by a function

...
G →

...
G , based on the semantics

definition of the individual GTA operators.

Constrain ( )
(c) declares constraint c on all the graphs in the last element of a given grape that satisfy

c. All other graphs are removed.J (c)K(⟨.., Ḡn⟩) = ⟨.., Ḡ′n⟩ with Ḡ′n = {(G,K+ {c}) ∣ (G,K) ∈ Ḡn ∧G ⊧ c}

Unconstrain ( )
(c) removes constraint c from the graphs in the last element of a grape:J (c)K(⟨.., Ḡn⟩) = ⟨.., Ḡ′n⟩ and Ḡ′n = {(G,K − {c}) ∣ (G,K) ∈ Ḡn}
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Derive (↠)
Computes all direct linear derivation of each graph in the last element of a given grape
and extends the given input grape with an element that contains all resulting graphs, i.e.,J↠ (r)K(⟨.., Ḡn⟩) = ⟨.., Ḡn, Ḡn+1⟩ where Ḡn+1 = {G′∣∃G ∈ Ḡn : G

r↝ G′}
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Select (⊚)
Function Select (⊚(k,≲)) reduces the last element of a given grape to at most k elements.
The selection is determined by a total order on graphs ≲. Formally,J⊚(k,≲)K(⟨.., Ḡn⟩) = ⟨.., Ḡ′n⟩, with Ḡ′n ⊆ Ḡn ∧ ∣Ḡ′n∣ ≤ k ∧ ∣Ḡ′n∣ ≤ ∣Ḡn∣ ∧ ∄G ∈ Ḡn − Ḡ′n,G′ ∈ Ḡ′n : G′ ≲ G
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Sequence (�)
�(a,b) composes two GTA expressions sequentially by using relational composition, i.e.,J�(a,b)K = {( ...G ,

...
K ) ∈

...
G ∣(

...
G ,

...
H ) ∈ JaK ∧ ( ...H ,

...
K ) ∈ JbK}.

Alternative (÷)
÷(a,b) composes two GTA expressions (a and b) as alternatives by extending a given
grape with a new element that is the union of the last elements of the grapes produced by
interpreting the two expressions, i.e., J÷(a,b)K( ...G : ⟨..x⟩) = ⟨..x, Ō1 ∪ Ō2⟩ withJaK( ...G ) = ⟨..y, Ō1⟩ and JbK( ...G ) = ⟨..z, Ō2⟩.
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Distinct (≢)
Graph exploration may produce graphs that are identical (up to isomorphism). The
distinct operator (≢) removes all graphs from the last element of a given grape, if they are
identical to any other graph in the grape.

J≢K(⟨Ḡ1, .., Ḡn⟩) =
⎧⎪⎪⎨⎪⎪⎩

⟨Ḡ1, .., J≢K(Ḡn − {D})⟩, if ∃D, J ∈ ⋃1≤i≤n Ḡi : D ≠ J ∧ D ≅ J
⟨Ḡ1, .., Ḡn⟩, otherwise

New (�)
The new operator is used to start a new grape. It takes a grape as input but “forgets” all
but the last element in the sequence.J�K(⟨.., Ḡn⟩) = ⟨Ḡn⟩.
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Loop (↻)
↻ (e) recursively interprets GTA expression e on the most recently computed grape while
the last element is not empty, i.e,

J↻ (e)K( ...G ) =

⎧⎪⎪⎨⎪⎪⎩

...
G , if JeK( ...G ) = ⟨..,∅⟩J↻ (e)K ○ JeK( ...G ) otherwise
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Search (↬)
↬ (c,o) recursively interprets a GTA expression o on the most recently computed grape
while none of the graphs in the last element of the current grape satisfy constraint c and
the last element is not empty, i.e,

J↬ (c,o)K( ...G : ⟨.., Ḡn⟩) =
⎧⎪⎪⎨⎪⎪⎩

...
G , if Ḡn = ∅ ∨ ∃G ∈ Ḡn : G ⊧ cJ↬ (c,o)K ○ JoK(G̈) otherwise
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Semantics of the two non-deterministic operators

Derive-choice (↝↝)
↝↝ is interpreted as a relation that extends the classical notion of non-deterministic rule
application to the data type of grapes.J↝↝ (r)K = {(⟨.., Ḡn⟩, ⟨.., Ḡn, Ḡn+1⟩) ∈

...
G ×

...
G ∣∀G ∈ Ḡn : ((∃!X ∈ Ḡn+1 : G r↝ X) ∨ (∄Y ∈ G : G r↝ Y)) ∧ ∣Ḡn+1∣ ≤

∣Ḡn∣}.

Alternative-choice (∼.. )
∼.. is interpreted as a relation that makes a non-deterministic choice between the relations
implied by the two GTA expressions, i.e., J∼..(a,b)K = JaK ∨ J∼..(a,b)K = JbK.
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Properties of the GTA and Rationale
• Computationally complete, but not minimal (n.d. rule application, iteration and
sequential composition sufficient and minimal 6)

• non-deterministic operators not needed but included for “performance” reasons
• Operators Constrain ( ) and Unconstrain ( ) help limit exploration by using graph
constraints.

• Operator Select (⊚) is included to limit exploration by allowing for heuristic search.
• Operator Distinct (≢) is included to avoid state collision during solution exploration.

6Habel Plump (2001): Computational Completeness of Programming Languages Based on Graph
Transformation. Foundations of Software Science and Computation Structures, Springer
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• Operator Select (⊚) is included to limit exploration by allowing for heuristic search.
• Operator Distinct (≢) is included to avoid state collision during solution exploration.

6Habel Plump (2001): Computational Completeness of Programming Languages Based on Graph
Transformation. Foundations of Software Science and Computation Structures, Springer
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GrapeVine overview
• major new (functional) revision of its ancestor tool Grape/GrapePress
• internal DSL to Clojure (JVM)
• based on Neo4J graph database
• Computational notebook front-end (optional)
• Graphs are stored in fully-persistent data structure7

7Weber (2022): Tool support for Fully-Persistent Graph Rewriting - GrapeVine. In: ICGT 2022, LNCS 13349,
Springer
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GrapeVine Control Structures and their GTA semantics:

Description GTA expression GrapeVine Syntax
Rule application (deterministic) ↠ (r) r

Rule application (non-deterministic) ↝↝ (r) r∼
Add constraint c (c) (schema c ..)

Add constraint negated c (¬c) (schema c- ..)
Remove constraint c c (schema-drop c ..)

Remove negated constraint c (¬c) (schema-drop c- ..)
Check constraint c �( (c), (c)) c

Check negated constraint c �( (¬c), (¬c)) c-
Sequence �(e1, e2) (-> e_1 e_2 ..)

Alternative (deterministic) ÷(e1, e2) (|| e_1 e_2 ..)
Alternative (non-deterministic) ∼..(e1, e2..) (||∼ e_1 e_2 ..)

Loop (while possible) ↻ (e) (->* e ..)
Until (without collisions check) ↬ (c, e) (->?* c e ..)
Until (with collision check) ↬ (c,�(e,≢))○ � (->?+ c e ..)

New � newgrape
creates a grape with a single element containing an empty graph � (⟨(∅,∅)⟩) (newgrape)

Distinct ≢ dist
Select ⊚(k, v) (select k v)
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A Simple Example: Ferryman
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Visual representation of rules and constraints:
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GrapeVine Program

(-> (newgrape) setup-ferryman
(->?+ all_on_the_other_side!

(|| ferry_one_over cross_empty)
wolf-can-eat-goat!-
goat-can-eat-grape!-)))

or, alternatively,

(-> (newgrape)
(schema wolf-can-eat-goat!- goat-can-eat-grape!-)
setup-ferryman
(->?+ all_on_the_other_side

(|| ferry_one_over cross_empty)))
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Efficiency considerations
Key prerequisite: fully-persistent data structure for graphs.

The Distinct operator may appear expensive, however graphs are compared based on
hashed fingerprints that are indexed in the database (O(log n)).

Run-time experiment:
• Program takes approx. 7 sec. (creating 27 graphs).
• Running the program 1,000 times creates 27,000 graphs
• The next program run still takes about 7 seconds.
• Running a modified program that uses the Until operator without collision check (->?*)
creates 216 graphs and takes 52 secs.

• Similar to backtracking-based solution using the former Grape, which takes about 50
seconds. Grape (like Progres and GP) cannot find a solution without limiting the steps.
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Conclusions and Future Work
• The abstraction provided by non-deterministic operators is appealing due to its
theoretical simplicity. However, it shifts complexity to the interpretation mechanism
and limits the assurances provided by programs in practice.

• Functional graph rewriting seeks to avoid non-determinism by computing sets of
graphs (all possible results)

• Graph state collision detection, heuristic selection, and graph constraints help limit the
number of graphs explored in programs.

• Our current work is on performing more rigorous performance and scalability
analyses, using standard benchmarks.
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Thank you!

Available in Docker: github.com/jenshweber/grape

Tool demo on Friday @noon (ICGT)
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